UNIVAC SCIENTIFIC GENERAL-PURPOSE COMPUTER SYSTEM TIMING SEQUENCES

PX 21

OCTOBER 1956

TABLE OF CONTENTS

	Q-Controlled Add (QAuv) (Op Code 52) Q-Controlled Substitute (QSuv) (Op Code 53) Left Shift in A (LAuk) (Op Code 54). Left Shift in Q (LQuk) (Op Code 55). Manually Selective Stop (MSjv) (Op Code 56). Program Stop (PS) (Op Code 57). Print (PR-v) (Op Code 61). Punch (PUjv) (Op Code 63). Multiply (MPuv) (Op Code 71). Multiply Add (MAuv) (Op Code 72). Divide (DVuv) (Op Code 73)	34 35 36 36 36 36 36 36 36 36 36 36 36 36 36
	Repeat (RPjnw) (Op Code 75)	17 18 54
Subsamm		55
	and Timing Sequences	56
SCC	SCC Initiate Read Sequences	58 59
MDAC	MDAC Locating Sequence	2 3 4
MC	MC Read Sequence. 6 MC Write (0-14) Sequence. 6 MC Write (15-29) Sequence. 6 MC Write (0-35) Sequence. 6	7 8
ARAC	ARAC Read Sequence (Instruction 27)	123
	ewriter Sequences	7 8 9

Hig	h-Speed Punch Sequence
Ari	thmetic Sequence Control
	ASC Add X to A Sequence
	ASC Subtract X from A Sequence
	ASC Subtract 1 from A Sequence
	ASC Split Add X to A Sequence
	ASC Split Subtract X from A Sequence
	ASC Logical Sequence
	ASC/SKC Shift A Sequence
	ASC/SKC Shift Q Sequence
	ASC/SKC Scale Factor Sequence
	ASC/SKC Multiply Sequence
	ASC/SKC Divide Sequence
	72
RSC	
	Repeat Sequences
	RSC Initiate Repeat Sequence
	RSC End Test (No Jump) Sequence
	RSC End Test (With Jump) Sequence
	RSC End Test (With Jump) Sequence
	LIST OF TABLES
	LIST OF TABLES
Tab	le
1 (Commands Which Produce Subcommand Timing Sequences Used in Executing Instructions

GENERAL

This volume lists the exact operational sequences which are performed in the execution of the instructions. The format relates the discrete operations of each sequence in such manner that the time of occurrence of each operation is clearly delineated. Two distinct sets of sequences are presented: Command Timing Sequences and Subcommand Timing Sequences.

2. COMMAND TIMING SEQUENCES

The Command Timing Sequences concern those signals called "commands", which are generated within the Command Timing Circuits, CTC, as a result of combining translated Operation Codes with timing signals (MAIN PULSES or MP's) generated by the Main Pulse Distributor. The resultant commands effect the principle steps in the execution of the instructions with regard to time, and, in addition, initiate necessary subsequences which are governed by subcommands.

The Command Timing sequences are arranged in a numerical order according to the octal values of the Operation Codes. A sheet listing the so-called "Instruction Reference Commands" precedes the first program instruction (Transmit Positive). The Instruction Reference Commands conclude the non-repeated execution of each instruction and are generated by MP 6 and MP 7; since the majority of the instructions are so terminated, the redundancy of concluding each instruction sheet with these commands is avoided.

The format employed for each instruction sheet contains the title of the instruction followed by its abbreviation, the octal operation code, a description of the function performed, and a tabular list of the commands. The tables have four columns, the contents of which are explained below.

- a. MP. This column lists the MAIN PULSES used in the generation of the commands. All commands listed between horizontal lines are generated simultaneously by the MP in this column with the exception of indented commands which will be explained in subparagraph b. below.
- b. COMMAND. This column lists the commands generated by the MP's. Each command produced directly by a MAIN PULSE is set to the left. Many commands, however, automatically and simultaneously produce one or more subservient commands; such subservient commands are indented and immediately follow the MP-produced command with which they are associated.
- c. SOURCE. The SOURCE column contains abbreviations which refer to the block diagrams concerning the Command Timing Circuits. These block diagrams are subdivided into lesser portions each associated with a particular portion of the Control Section. For instance, the abbreviation "CTC-SCC" refers to the Storage Class Control portion of the Command Timing Circuits diagram which shows diagrammatically the development of the particular command by combining the translated Operation Code with a MAIN PULSE.

d. DESTINATION. - The DEST. Column shows the circuit to which the command is directed. In some cases the desired result is effected directly by the command. In other cases, the command initiates a subsequence which is controlled by subcommands in the circuit referred to in the DEST. Column. These subsequences are listed in Table 1.

3. SUBCOMMAND TIMING SEQUENCES

Many of the commands from CTC initiate subsequences that are controlled by subcommands. During the time interval occupied by the major portion of the subsequence, the Main Pulse Distributor is stopped. The stopping of MPD is effected by a variety of signals. These are:

- a. WAIT INTERNAL REFERENCE
- b. WAIT RSC
- c. STOP
- d. TEST LOCKOUT (in conjunction with an EXTERNAL LOCKOUT ENABLE)

At the conclusion of the subsequence (or in some cases, before the conclusion of the subsequence) a RESUME signal is sent to the Pulse Distributor Control, PDC, which allows the next MP to be issued.

The subsequences are timed by CONTROLLED CLOCK PULSES rather than by MAIN PULSES within CTC as in the main instruction sequences. However, the Magnetic Core subsequences are controlled by pulses from MCPD, and the MD Locating Sequence is controlled by pulses from CPD.

The Subcommand Timing Sequences, together with their respective initiating commands, are shown in tabular form in Table 1. The Subcommand Timing Sequence for unassigned addresses is not included in Table 1, but is included in the SCC subsequences. The computer will be stopped if a storage reference to an unassigned address is included in an instruction.

4. GLOSSARY OF ABBREVIATIONS AND TERMS

The following list of abbreviations and terms are used in this volume. They should be studied carefully before using the Timing Sequences.

A The 72-bit Accumulator $(A_{71}, A_{70}, \ldots, A_{0})$

AL The left-hand (most significant) 36 bits of A

AR The right-hand (least significant) 36 bits of A

AIK The Angular Index Counter

 \longrightarrow (Arrow) Transmit, such as $A_R \longrightarrow X$

AR A 12-stage Address Register, used to store a Magnetic Core address during a reading or writing operation.

ARAC The Arithmetic Register Access Control

ASC	The Arithmetic Sequence Control
CPD	The Clock Pulse Distributor
CRC	The Clock Rate Control
CSS	The Clock Source Selector
CTC	The Command Timing Circuits
D(Q)	A 72-bit word whose right-hand 36 bits are the content of ${\tt Q}$ and whose left-hand 36 bits are all alike and equal to the left-most bit of the content of ${\tt Q}$.
D(u)	A 72-bit word whose right-hand 36 bits are the content of u and whose left-hand 36 bits are all alike and equal to the left-most bit of the content of u .
F_1	A Fixed Address 00000 (or 40001 depending on a switch setting).
F ₂	A Fixed Address 00001
F ₃	A Fixed Address 00002
HPC	The High-Speed Punch Control
HPR	The High-Speed Punch Register
IR	Magnetic Core Input Register, a 36-stage register that serves as a transfer register between X and the cores.
j	A one-digit octal number (u_{14} , u_{13} , u_{12})
k	The Shift Count (v_6 , v_5 ,, v_0 or u_6 , u_5 , u_0)
L(Q)(u)	A 72-bit word whose left-hand 36 bits are zeros and each of whose right-hand 36 bits is given by the bit-by-bit product of the corresponding bits of Q and \mathbf{u} .
L(Q)'(v)	A 72-bit word whose left-hand 36 bits are zeros and each of whose right-hand 36 bits is given by the bit-by-bit product of the corresponding bits of v and the complement of Q.
MC	A prefix denoting Magnetic Core. This abbreviation followed by a subscript number denotes a particular stage or digit of a word in magnetic core storage. For Example: MCO represents the digit which stores the lowest-order bit (2^0) , and MC35 represents the digit which stores the highest-order bit (2^{35}) .
MCAC	Magnetic Core Access Control. A flip-flop control circuit that produces sequences for execution of reading and writing operations in the Magnetic Core Storage system

operations in the Magnetic Core Storage system.

MCP Magnetic Core Pulse, usually followed by a number, such as MCP-1, MCP-2, etc. Basic timing pulse used in the Magnetic Core Access Control.

MCPD Magnetic Core Pulse Distributor, a three-stage binary counter and distributor that distributes a sequence of four MCP's.

MCR The Main Control Register, a part of PCR.

MCS An abbreviation for the entire Magnetic Core Storage System.

MCT The Main Control Translator

MD A prefix denoting Magnetic Drum. This abbreviation followed by a subscript number denotes a particular stage or digit of a word in Magnetic Drum Storage. For example: MDO represents the digit which stores the lowest-order bit (2^0) , and MD35 represents the digit which stores the highest-order bit (2^{35}) .

MDS The Magnetic Drum Storage System

MDAC The Magnetic Drum Storage Access Control

MP A Main Pulse usually followed by a numeral

MPD The Main Pulse Distributor

n A four-digit octal number $(u_{11}, u_{10}, \ldots, u_{0})$

PAK The Program Address Counter

() (Parenthesis) Denotes "the content of"

PCR The Program Control Registers: MCR, UAK, and VAK

PDC The Pulse Distributor Control

PIC The Program Interrupt Control

(Prime) Denotes "the complement of" such as Q', X', etc.

Q The 36-bit Q Register $(Q_{35}, Q_{34}, \ldots, Q_0)$

RSC The Repeat Sequence Control

S(u) A 72-bit word whose right-hand 36 bits are the content of u and whose left-hand 36 bits are all zeros.

SAR The Storage Address Register

SCC The Storage Class Control

SCT The Storage Class Translator

SK The Shift Counter (SAR₆, SAR₅, SAR₀) The Shift Counter Control SKC The Typewriter Control TWC TWR The Typewriter Register The first execution address (i_{29} , i_{28} , i_{15}) The U Address Counter, a part of PCR UAK The second execution address (i $_{14}$, i $_{13}$, i $_{0}$) The V Address Counter, a part of PCR VAK The V address portion of a Repeat instruction W The X Register (x_{35} , x_{34} , x_0) X The address of the current instruction y

TABLE I
COMMANDS WHICH PRODUCE SUBCOMMAND TIMING SEQUENCES USED IN EXECUTING INSTRUCTIONS

WHEN THE FOLLOWING COMMANDS APPEAR IN COMMAND TIMING SEQUENCES THEY PRODUCE THESE SUBCOMMAND TIMING SEQUENCES MP COMMAND SOURCE DEST. MDAC READ SEQUENCE
MCAC READ SEQUENCE
ARAC READ A or Q SEQUENCE SCC INITIATE READ SEQUENCE Initiate Read CTC-SCC SCC (SAR) SCC INITIATE
WRITE (0-35) SEQUENCE
WRITE (0-35) SEQUENCE
ARAC WRITE A or Q SEQUENCES Initiate Write (Q-35) CTC-SCC SCC (SAR) r→ MDAC WRITE (0-14) SEQUENCE SCC INITIATE SCC INITIALE WRITE (0-14) SEQUENCE Initiate Write (0-14) CTC-SCC SCC Same as for (0-14) except that bits (15-29) are involved Initiate Write (15-29) CTC-SCC SCC TYPEWRITER SEQUENCE Initiate **Print** CTC-OUT TWR HIGH SPEED PUNCH SEQUENCE Initiate High Speed Punch CTC-OUT **HPR** Add X to A ADD X TO A
SUBTRACT X FROM A
SPLIT ADD X TO A
SPLIT SUBTRACT X FROM A Subtract X from A
Split Add X to A
Split Subtract X from A CTC-ASC ASC →ASC SEQUENCE SUBTRACT I FROM A Subtract | from A INITIATE LOGICAL Initiate Logical ►ASC/SKC {SHIFT A } SEQUENCE Initiate Shift A CTC-SKC SKC Initiate Shift Q Initiate Scale Factor (SCALE FACTOR ASC/SKC MULTIPLY Initiate Multiply SEQUENCE CTC-ASC **ASC** Initiate Divide Initiate Repeat → RSC INITIATE REPEAT SEQUENCE CTC-RSC RSC → RSC END TEST (NO JUMP) SEQUENCE Initiate End Test CTC-RSC **RSC** Jump Terminate Initiate RSC END TEST (WITH JUMP) SEQUENCE CTC-RSC **RSC** (Initiate End Test)

^{*}There are several types of these sequences. The particular ARAC READ or WRITE SEQUENCE that is executed depends on the instruction being executed; the particular TYPEWRITER SEQUENCE that is carried out depends on what is transmitted to TWR from X.

COMMAND TIMING SEQUENCE TABLES

INSTRUCTION REFERENCE COMMANDS

The non-repeated execution of every program instruction is concluded as MPD advanced through MP 6 and MP 7. Commands issued on these MP's extract the next instruction from storage and prepare the computer for the execution. These Instruction Reference Commands are not listed under the separate instruction headings, but they are understood to conclude each non-repeated execution of every program instruction. The foregoing does not apply when the Repeat (RPjnw) instruction is being executed or when the Program Interrupt feature is used.

The Repeat termination sequence is given on Page 51 and the instruction Reference Commands for the Program Interrupt are given below.

MP		COMMAND	SOURCE	DEST.
		COMMENTE	COUNCE	DEST.
	NORMAL	PROGRAM INTERRUPT		
6	Clear PCR	Clear PCR	CTC-PCR	PCR
	(Clear RSC)	(Clear RSC)	CTC-RSC	RSC
	Transmit PAK TO SAR		CTC-PAK	PAK
	Advance PAK		CTC-PAK	PAK
		Set SAR to F ₃ (00002)	CTC-SAR	SAR
	Initiate Read	Initiate Read	CTC-SCC	SCC
	Clear X	Clear X	CTC-AR	X
	Wait Interal Reference	Wait Internal Reference	CTC-PDC	PDC
7	Clear SAR		CTC-SAR	SAR
	Transmit (X) to	PCR (Initiate 2 μsec delay)	CTC-AR	X/CRC

PROGRAM INSTRUCTIONS

Instruction: TRANSMIT POSITIVE (TPuv)

Replace (v) with (u).

OPERATION CODE: 11

MP	COMMAND	SOURCE	DEST
0	Clear X	CTC-AR	Х
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	SCC
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
5	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Write (0-35)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC
l	· · · · · · · · · · · · · · · · · · ·		

OPERATION CODE: 12

Instruction: TRANSMIT MAGNITUDE (TMuv)

Replace (v) with the absolute magnitude of (u).

MP	COMMAND		SOURCE	DEST.
0	Clear X	Clear X		Х
	Transmit UAK to SAR		CTC-PCR	UAK
	Initiate Read		CTC-SCC	SCC
	Clear X		CTC-AR	X
	Wait Internal Referenc	Wait Internal Reference		PDC
1	·	·		
	If (X) is positive	If (X) is negative		
5		Complement (X)	CTC-AR	х
	Transmit VAK to SAR	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Write (0-35)	Initiate Write (0-35)	CTC-SCC	scc
	Wait Internal Ref.	Wait Internal Ref.	CTC-PDC	PDC

Note: MP l provides additional time for MCT to detect the sign of (X) and respond.

OPERATION CODE: 13

Instruction: TRANSMIT NEGATIVE (TNuv)

Replace (v) with the complement of (u).

MP	COMMAND	SOURCE	DEST
0	Clear X	CTC-AR	Х
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	SCC
	Clear X	CTC-AR	Х
	Wait Internal Reference	CTC-PDC	PDC
5	Complement (X) Transmit VAK to SAR Initiate Write (0-35)	CTC-AR CTC-PCR CTC-SCC	X VAK SCC
	Wait Internal Reference	CTC-PDC	PDC
ı			

OPERATION CODE: 14

Instruction: INTERPRET (IP--)

Let y represent the address from which CI was obtained. Replace the right-hand 15 bits of (F₁) with the quantity y plus 1. Then take (F₂) as the next instruction:

MP	COMMAND	SOURCE	DEST
0	Clear X	CTC -AR	х
	Transmit PAK to SAR	CTC-PAK	PAK
	Advance PAK	CTC-PAK	PAK
1	Transmit SAR to X	CTC-SAR	SAR
	Set SAR to F ₁	CTC-SAR	SAR
	Clear PAK	CTC-PAK	PAK
	(Clear RSC)	CTC-RSC	RSC
	Initiate Write (0-14)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC
2	Transmit PAK to SAR	CTC-PAK	PAK
	Advance PAK (see note)	CTC-PAK	PAK
5			-

Note: At this point PAK contains 00001 which is Fixed Address F_2 . The NI will then be taken from F_2 .

OPERATION CODE: 15

Instruction: TRANSMIT U. ADDRESS (TUuv)

Replace the 15 bits of (v), designated by v_{15} through v_{29} , with the corresponding bits of (u), leaving the remaining 21 bits of (v) undisturbed.

MP	COMMAND	SOURCE	DEST
0	Clear X	CTC-AR	Х
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	x
	Wait Internal Reference	CTC-PDC	PDC
5	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Write (15-29)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC

Note: The Accumulator and the Q Register are not acceptable v execution addresses for this instruction.

OPERATION CODE: 16

Instruction: TRANSMIT V ADDRESS (TVuv)

Replace the right-hand 15 bits of (v), designated by v_0 through v_{14} , with the corresponding bits of (u), leaving the remaining 21 bits of (v) undisturbed.

MP	COMMAND	SOURCE	DEST
0	Clear X	CTC-AR	X
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	х
	Wait Internal Reference	CTC-PDC	PDC
5	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Write (0-14)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC

Note: The Accumulator and the Q register are not acceptable v execution addresses for this instruction.

OPERATION CODE: 17

Instruction: EXTERNAL FUNCTION (EF-v)

Select a unit of external equipment and perform the function designated by (v).

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	Х
	Transmit VAK to SAR	CTC -PCR	VAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
1	Test Input/Output Lockouts	MPD	PDC
5	Transmit (X) to IOB (Set Select F.F)	CTC-10	ІОВ
	Initiate Lockout IOB Write	CTC-10	PDC

OPERATION CODE: 21

Instruction: REPLACE ADD (RAuv)

Form in A the sum of D(u) and D(v). Then replace (u) with (A $_R$).

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	X
	Initiate Clear A	CTC-ARAC	ARAC
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	SCC
	Clear X	CTC-AR	Х
	Wait Internal Reference	CTC-PDC	PDC
1	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
2	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
3	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
4	Clear X	CTC-AR	Х
5	Transmit (A _R) to X	CTC-AR	А
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Write (0-35)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC

OPERATION CODE:

22

Instruction: LEFT TRANSMIT (LTjkv)

Left circular shift (A) by k places. Then replace (v) with (A_L) if j=0; or replace (v) with (A_R) if j=1.

MP	C(OMMAND	SOURCE	DEST
0	Clear X		CTC-AR	X
	Transmit UAK to SAR		CTC-PCR	UAK
1	Initiate Shift A		CTC-SKC	SKC
	Wait Internal Reference (See Note)		CTC-PDC	PDC
2	If $j = 0$	If j = 1		
	Transmit (A _L) to X Clear SAR	Transmit (A _R) to X Clear SAR	CTC-AR CTC-SAR	A SAR
5	Transmit VAK to SAR		CTC-PCR	VAK
	Initiate Write 0-35		CTC-SCC	scc
	Wait Internal Refere	nce	CTC-PDC	PDC

OPERATION CODE: 23

Instruction: REPLACE SUBTRACT (RSuv)

Form in A the difference D(u) minus D(v). Then replace (u) with (A_R) .

MP	COMMAND	SOURCE	DEST
0	Clear X	CTC-AR	Х
	Initiate Clear A	CTC-ARAC	ARAC
	Transmit UAK to SAR	CTC-PCR	UAk
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
1	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
2	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Read	CTC-SCC	SCC
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
3	Subtract (X) from (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
4	Clear X	CTC-AR	Х
5	Transmit (A _R) to X	CTC-AR	A
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Write (0-35)	CTC-SCC	SCC
	Wait Internal Reference	CTC-PDC	PDC

OPERATION CODE: 27

Instruction: CONTROLLED COMPLEMENT (CCuv)

Replace (A_R) with (u) leaving (A_L) undisturbed. Then complement those bits of (A_R) that correspond to ones in (v). Then replace (u) with (A_R).

MP	COMMAND	SOURCE	DEST.
0 .	Clear X	CTC-AR	X
	Initiate Clear A (see note)	CTC-ARAC	ARAC
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	x
	Wait Internal Reference	CTC-PDC	PDC
1	Complement (X)	CTC-AR	Х
2	Transmit (X') to A _R	CTC-AR	A
	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	Х
	Wait Internal Reference	CTC-PDC	PDC
3	Complement (X)	CTC-AR	х
4	Transmit (X') to A _R	CTC-AR	A
	Clear X	CTC-AR	. X
5	Transmit (A _R) to X	CTC-AR	A
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Write (0-35)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC

Note: The presence of the MCT 27 operation code enable blocks the CLEAR $\rm A_L$ signal in ARAC. Thus, as a result of the INITIATE CLEAR A command, only $\rm A_R$ is cleared.

OPERATION CODE: 31

Instruction: SPLIT POSITIVE ENTRY (SPuk)

Form S(u) in A. Then left circular shift (A) by k places. (The value of k must not exceed seven bits, i.e., bits $\rm V_7$ through $\rm V_{14}$ must contain zeros.)

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC -AR	Х
	Initiate Clear A	CTC-ARAC	ARAC
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
1	Transmit VAK to SAR	CTC-PCR	VAK
	Split Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
5	Initiate Shift (A)	CTC-SKC	SKC
	Wait Internal Reference (see note)	CTC-PDC	PDC

OPERATION CODE:

32

Instruction: SPLIT ADD (SAuk)

Add S(u) to (A). Then left circular shift (A) by k places. (The value of k must not exceed seven bits, i.e., bits V7 through $\rm V_{14}$ must contain zeros.)

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	Х
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	x
	Wait Internal Reference	CTC-PDC	PDC
1	Transmit VAK to SAR	CTC-PCR	VAK
	Split Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
5	Initiate Shift (A)	CTC-SKC	SKC
	Wait Internal Reference (see note)	CTC-PDC	PDC

OPERATION CODE: 33

Instruction: SPLIT NEGATIVE ENTRY (SNuk)

Form in A the complement of S(u). Then left circular shift (A) by k places. (The value of k must not exceed seven bits, i.e., bits V_7 through V_{14} must contain zeros.)

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	X
	Initiate Clear A	CTC-ARAC	ARAC
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
1	Transmit VAK to SAR	CTC-PCR	VAK
	Split Subtract (X) from (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
5	Initiate Shift (A)	CTC-SKC	SKC
	Wait Internal Reference (see note)	CTC-PDC	PDC

OPERATION CODE:

34

Instruction: SPLIT SUBTRACT (SSuk)

Subtract S(u) from (A). Then left circular shift (A) by k places. (The value of k must not exceed seven bits, i.e., bits V7 through V $_{14}$ must contain zeros.)

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	Х
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	Х
	Wait Internal Reference	CTC-PDC	PDC
1	Transmit VAK to SAR	CTC-PCR	VAK
	Split Subtract (X) from (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
5	Initiate Shift (A)	CTC-SKC	SKC
	Wait Internal Reference (see note)	CTC-PDC	PDC

OPERATION CODE:

35

Instruction: ADD AND TRANSMIT (ATuv)

Add D(u) to (A). Then replace (v) with (A $_{R}$).

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	X
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	Х
	Wait Internal Reference	CTC-PDC	PDC
1	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
2	Clear X	CTC-AR	Х
5	Transmit (A _R) to X	CTC-AR	A
	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Write (0-35)	CTC-SCC	SCC
	Wait Internal Reference	CTC-PDC	PDC

OPERATION CODE:

36

Instruction: SUBTRACT AND TRANSMIT (STuv)

Subtract D(u) from (A). Then replace (v) with (A $_R$).

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	X
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC -AR	X
	Wait Internal Reference	CTC-PDC	PDC
1	Subtract (X) from (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
2	Clear X	CTC-AR	X
5	Transmit (A _R) to X	CTC-AR	Α
	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Write (0-35)	CTC-SCC	SCC
	Wait Internal Reference	CTC-PDC	PDC

OPERATION CODE:

37

Instruction: RETURN JUMP (RJuv)

Let y represent the address from which CI was obtained. Replace the right-hand 15 bits of (u) with the quantity y plus 1. Then take (v) as NI.

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	X
	Transmit PAK to SAR	CTC-PAK	PAK
	Advance PAK	CTC-PAK	PAK
1	Transmit SAR to X	CTC-SAR	SAR
	Clear SAR	CTC-SAR	SAR
2			·
3	Transmit VAK to SAR	CTC-PCR	VAK
	Clear PAK	CTC-PAK	PAK
	(Clear RSC)	CTC-RSC	RSC
4	Transmit SAR to PAK	CTC-SAR	SAR
	Clear SAR	CTC-SAR	SAR
5	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Write (0-14)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC

Note: MP 2 used for delay only.

OPERATION CODE:

41

Instruction: INDEX JUMP (IJuv)

Form in A the difference D(u) minus 1. Then if $A_{71}=1$, continue the present sequence of instructions; if $A_{71}=0$, replace (u) with (A_R) and take (v) as NI.

MP	COMM	AND	SOURCE	DEST.
0	Clear X		CTC-AR	X
	Initiate Clear A		CTC-ARAC	ARAC
	Transmit UAK to SAR		CTC-PCR	UAK
	Initiate Read		CTC-SCC	scc
	Clear X		CTC -AR	Х
	Wait Internal Reference		CTC-PDC	PDC
1	Add (X) to (A)		CTC-ASC	ASC
	Wait Internal Reference		CTC-PDC	PDC
2	Transmit VAK to SAŖ		CTC-PCR	VAK
	Subtract l from (A)		CTC-ASC	ASC
	Wait Internal Reference		CTC-PDC	PDC
	If (A) is positive	If (A) is negative		
3	Clear PAK		CTC-PAK	PAK
	(Clear RSC)		CTC-RSC	RSC
4	Transmit SAR to PAK		CTC-SAR	SAR
	Clear SAR	Clear SAR	CTC-SAR	SAR
	Clear X	Clear X	CTC-AR	Х
5	Transmit (A _R) to X	Transmit (A_R) to X	CTC -AR	Α
	Transmit UAK to SAR		CTC-PCR	UAK
	Initiate Write (0-35)		CTC-SCC	scc
	Wait Internal Ref.		CTC-PDC	PDC

OPERATION CODE: 42

Instruction: THRESHOLD JUMP (TJuv), not repeated

Subtract (u) from (A). If A_{71} is then 1, take (v) as the next instruction; if A_{71} is then 0, continue the present sequence of instructions. Then, in either case, restore (A) to its initial state.

MP	COMMAND		SOURCE	DEST.
0	Clear X		CTC-AR	X
	Transmit UAK to SAR		CTC-PCR	UAK
	Initiate Read		CTC-SCC	scc
	Clear X		CTC-AR	Х
	Wait Internal Reference	ce	CTC-PDC	PDC
1	Subtract (X) from (A)		CTC-ASC	ASC
	Wait Internal Reference		CTC-PDC	PDC
2				
	If (A) is positive	If (A) is negative		
3	Complement (X)	Complement (X)	CTC-AR	X
		Clear PAK	CTC-PAK	PAK
		Transmit VAK to SAR	CTC-PCR	VAK
5		Transmit SAR to PAK	CTC-SAR	SAR
		Clear SAR	CTC-SAR	SAR
	Add (X) to (A)	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Ref.	Wait Internal Ref.	CTC-PDC	PDC

Note: MP 2 provides additional time for MCT to detect the sign of (A) and respond.

OPERATION CODE: 42

Instruction: THRESHOLD JUMP (TJuv), repeated

Subtract (u) from (A). If A_{71} is then 1, replace (Q) with jn-r and take (v) as the next instruction; if A_{71} is then 0, continue with the present sequence of instructions. Then, in either case, restore (A) to its initial state (see note 1).

MP	COMMAND		SOURCE	DEST.
0	Clear X	Clear X		Х
	Transmit UAK to SAR		CTC -PCR	UAK
	Initiate Read		CTC-SCC	scc
	Clear X		CTC-AR	x
	Wait Internal Refere	nce	CTC-PDC	PDC
1	Subtract (X) from (A)		CTC-ASC	ASC
	Wait Internal Refere	nce	CTC-PDC	PDC
2				
	If (A) is positive	If (A) is negative		
3	Complement (X)	Complement (X)	CTC-AR	х
		Complement PAK	CTC-PAK	PAK
5	Add (X) to (A)	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Ref.	Wait Internal Ref.	CTC-PDC	PDC
		Initiate Jump Terminate	CTC-RSC	RSC
		Transmit PAK to SAR	CTC-PAK	PAK
		(Advance PAK)	CTC-PAK	PAK
		Clear MCR	CTC-PCR	MCR
	Initiate End Test	(Initiate End Test)	CTC-RSC	RSC
	Advance PAK	(Advance PAK)	CTC-PAK	PAK
	Wait RSC	Wait RSC (see jump termination)	CTC-PDC	PDC

Note: 1. This instruction is preceded by instruction 75jnw which leaves the complement of jn in PAK for controlling the execution of this instruction.

^{2.} MP 2 provides additional time for MCT to detect the sign of (A) and respond.

OPERATION CODE: 43

Instruction: EQUALITY JUMP (EJuv), not repeated

Subtract (u) from (A). If (A) is then zero, take (v) as the next instruction; if (A) is then not zero, continue the present sequence. Then in either case, restore (A) to its initial state.

MP	COMMAND		SOURCE	DEST.
0	Clear X		CTC-AR	X
	Transmit UAK to SAR		CTC-PCR	UAK
	Initiate Read		CTC-SCC	scc
	Clear X		CTC -AR	Х
	Wait Internal Reference		CTC-PDC	PDC
1	Subtract (X) from (A)		CTC-ASC	ASC
	Wait Internal Reference		CTC-PDC	PDC
2	Complement (X)		CTC-AR	Х
	Subtract 1 from (A)		CTC-ASC	ASC
	Wait Internal Reference		CTC-PDC	PDC
	If (A) was zero	If (A) was not zero		
3	Transmit VAK to SAR		CTC -PCR	VAK
	Clear PAK		CTC-PAK	PAK
	Add (X) to (A)	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	Wait Internal Ref.	CTC-PDC	PDC
4	Transmit SAR to PAK		CTC-SAR	SAR
	Clear SAR		CTC-SAR	SAR
	Set X to 1	Set X to 1	CTC -AR	Х
5	Add (X) to (A)	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Ref.	Wait Internal Ref.	CTC-PDC	PDC

OPERATION CODE: 43

Instruction: EQUALITY JUMP (EJuv), repeated

Subtract (u) from (A). If (A) is then zero, replace (Q) with jn-r and take (v) as the next instruction; if (A) is then not zero, repeat the execution. Then, in either case, restore (A) to its initial state (see note).

MP	COMMAND		SOURCE	DEST.
0	Clear X		CTC-AR	Х
	Transmit UAK to SAR		CTC-PCR	UAK
	Initiate Read		CTC-SCC	scc
	Clear X		CTC-AR	X
	Wait Internal Reference		CTC-PDC	PDC
1	Subtract (X) from (A)		CTC-ASC	ASC
	Wait Internal Reference		CTC-PDC	PDC
2	Complement (X)		CTC-AR	Х
	Subtract 1 from (A)		CTC-ASC	ASC
	Wait Internal Reference		CTC-PDC	PDC
	[If (A) was zero	If (A) was not zero		
3	Complement PAK		CTC-PAK	PAK
	Add (X) to (A)	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	Wait Internal Ref.	CTC-PDC	PDC
4	Set X to 1	Set X to 1	CTC-AR	Х
5	Add (X) to (A)	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	Wait Internal Ref.	CTC-PDC	PDC
	Initiate Jump Terminate		CTC-RSC	RSC
	Transmit PAK to SAR		CTC-PAK	PAK
	(Advance PAK)		CTC-PAK	PAK
	Clear MCR		CTC-PCR	MCR
	(Initiate End Test)	Initiate End Test	CTC-RSC	RSC
	(Advance PAK)	Advance PAK	CTC-PAK	PAK
	Wait RSC (see jump termination)	Wait RSC	CTC-PDC	PDC

Note: This instruction is preceded by instruction 75jnw which leaves the complement of jn in PAK for controlling the execution of this instruction.

OPERATION CODE: 44

Instruction: Q-JUMP (QJuv)

If Q_{35} = 1, take (u) as NI; if Q_{35} = 0, take (v) as NI. Then, in either case, left circular shift (Q) by one place.

MP	COMMAND		SOURCE	DEST.
	If (Q) is positive	If (Q) is negative		
0	Clear X	Clear X	CTC-AR	х
	Clear PAK	Clear PAK	CTC-PAK	PAK
	(Clear RSC)	(Clear RSC)	CTC-RSC	RSC
	Transmit VAK to SAR	Transmit UAK to SAR	CTC-PCR	VAK/UAK
5	Transmit SAR to PAK		CTC-SAR	SAR
	Clear SAR		CTC-SAR	SAR
	Shift (Q) Left 1		CTC-AR	Q

OPERATION CODE: 45

Instruction: MANUALLY SELECTIVE JUMP (MJjv)

If the number j is 0, take (v) as NI. If j is 1, 2, or 3, and the correspondingly numbered MJ selecting switch has been selected, take (v) as NI; if this switch selection has not been made, continue the present sequence.

MP	COMMAND		SOURCE	DEST.
	For jump	For no jump		
0	Clear X	Clear X	CTC-AR	X
	Transmit VAK to SAR	Transmit VAK to SAR	CTC-PCR	VAK
	Clear PAK		CTC-PAK	PAK
	(Clear RSC)		CTC-RSC	RSC
5	Transmit SAR to PAK		CTC-SAR	SAR
	Clear SAR	Clear SAR	CTC-SAR	SAR
				1

OPERATION CODE: 46

Instruction: SIGN JUMP (SJuv)

If $A_{71} = 1$, take (u) as NI. If $A_{71} = 0$, take (v) as NI.

MP	COM	MAND	SOURCE	DEST.
	If (A) is positive	If (A) is negative	÷	
0	Clear X	Clear X	CTC -AR	X
	Clear PAK	Clear PAK	CTC-PAK	PAK
	(Clear RSC)	(Clear RSC)	CTC-RSC	RSC
	Transmit VAK to SAR	Transmit UAK to SAR	CTC-PCR	VAK/UAK
5	Transmit SAR to PAK		CTC-SAR	SAR
	Clear SAR		CTC-SAR	SAR
4				

OPERATION CODE: 47

Instruction: ZERO JUMP (ZJuv)

If (A) is not zero, take (u) as NI; if (A) is zero, take (v) as NI.

MP	COMMAND		SOURCE	DEST.
0	Clear X		CTC-AR	X
	Clear PAK		CTC-PAK	PAK
	(Clear RSC)		CTC-RSC	RSC
	Subtract 1 from (A)		CTC-ASC	ASC
	Wait Internal Refere	nce	CTC-PDC	PDC
	If (A) was zero	If (A) was not zero		
1	Transmit VAK to SAR	Transmit UAK to SAR	CTC-PCR	VAK/UAK
	Set X to 1	Set X to l	CTC-AR	X
5	Transmit SAR to PAK		CTC-SAR	SAR
	Clear SAR		CTC-SAR	SAR
	Add (X) to (A)		CTC-ASC	ASC
	Wait Internal Refere	ence	CTC-PDC	PDC

OPERATION CODE: 51

Instruction: Q-CONTROLLED TRANSMIT (QTuv)

Form in A the number L(Q)(u). Then replace (v) by (A_R) .

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	X
	Initiate Clear A	CTC-ARAC	ARAC
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	AR
	Wait Internal Reference	CTC-PDC	PDC
1	Transmit (Q') to X'	CTC-AR	Q
2	Split add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
5	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Write (0-35)	CTC-SCC	SCC
	Wait Internal Reference	CTC-PDC	PDC

OPERATION CODE: 52

Instruction: Q-CONTROLLED ADD (QAuv)

Add to (A) the number L(Q)(u). Then replace (v) by (A_R).

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	Х
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	x
	Wait Internal Reference	CTC-PDC	PDC
1	Transmit (Q') to X'	CTC-AR	Q
2	Split Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
3	Clear X	CTC-AR	х
5	Transmit (A_R) to X	CTC-AR	A
	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Write (0-35)	CTC-SCC	scc
,	Wait Internal Reference	CTC-PDC	PDC

OPERATION CODE:

53

Instruction: Q-CONTROLLED SUBSTITUTE (QSuv)

Form in A the quantity L(Q)(u) plus $L(Q^{\bullet})(v)$. Then replace (v) with (A_R) . The effect is to replace selected bits of (v) with the corresponding bits of (u) in those places corresponding to 1's in Q. The final (v) is the same as the final (A_R) .

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	X
	Initiate Clear A	CTC-ARAC	ARAC
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	х
	Wait Internal Reference	CTC-PDC	PDC
1	Initiate Logical (see note)	CTC-ASC	ASC
	Extend Arithmetic Sequence	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
2	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	Х
	Wait Internal Reference	CTC-PDC	PDC
3	Initiate Logical (see note)	CTC-ASC	ASC
	Extend Arithmetic Sequence	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
5	Transmit (A_R) to X	CTC-AR	A
	Transmit VAK to SAR	CTC -PCR	VAK
	Initiate Write (0-35)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC

Note: At the conclusion of the first logical operation,(Q) is complemented in preparation for the second logical operation. At the conclusion of the second logical operation (Q') is complemented, thus restoring (Q) to its initial value.

OPERATION CODE:

54

Instruction: LEFT SHIFT IN A (LAuk)

Replace (A) with D(u). Then left circular shift (A) by k places. Then replace (u) with (AR). If u=a, the first step is omitted so that the initial content of A is shifted. (The value of k must not exceed seven bits, i.e., bits V7 through V14 must contain zeros, if SAR at MP 5 is to contain the original u address.)

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	x
	Initiate Clear A	CTC-ARAC	ARAC
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	x
	Wait Internal Reference	CTC-PDC	PDC
1	Transmit VAK to SAR	CTC-PCR	VAK
	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
2	Clear X	CTC-AR	х
	Initiate Shift (A)	CTC-SKC	SKC
	Wait Internal Reference (see note)	CTC-PDC	PDC
5	Transmit (A_R) to X	CTC-AR	Α
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Write (0-35)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC

Note: No wait is generated if k is zero.

OPERATION CODE: 55

Instruction: LEFT SHIFT IN Q (LQuk)

Replace (Q) with (u). Then left circular shift (Q) by k places. Then replace (u) with (Q). (The value of k must not exceed seven bits i.e., bits V7 through $\rm V_{14}$ must contain zeros, if SAR at MP 5 is to contain the original u address.)

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	X
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	Х
	Wait Internal Reference	CTC-PDC	PDC
1	Clear Q	CTC-AR	Q
2	Transmit (X) to Q	CTC-AR	Х
	Clear X	CTC-AR	Х
	Transmit VAK to SAR	CTC-PCR	VAK
3	Complement (X)	CTC-AR	Х
	Initiate Shift (Q)	CTC-SKC	SKC
	Wait Internal Reference (see note)	CTC-PDC	PDC
5	Transmit (Q') to X'	CTC-AR	Q
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Write (0-35)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC

Note: No wait is generated if k is zero.

OPERATION CODE: 56

Instruction: MANUALLY SELECTIVE STOP (MSjv)

If j=0, stop the computer operation and provide suitable indication. If j is 1, 2, or 3 and the correspondingly numbered MS selecting switch has been selected, stop the computer operation and provide suitable indication. Whether or not a stop occurs, (v) is NI.

MP		COMMAND	SOURCE	DEST.
0	Clear X		CTC-AR	X
	Clear PAK		CTC-PAK	PAK
	(Clear RSC)		CTC-RSC	RSC
	Transmit VAK to SAR		CTC-PCR	VAK
	For Stop	For no Stop		
5	Transmit SAR to PAK	Transmit SAR to PAK	CTC-SAR	SAR
	Clear SAR	Clear SAR	CTC-SAR	SAR
	Stop Clock		CTC-Stop	Stop
	Stop		Stop	PDC/CRC

OPERATION CODE: 57

Instruction: PROGRAM STOP (PS--)

Stop computer operation and provide suitable indication.

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	Х
	Stop Clock	CTC-Stop	Stop
	Stop	Stop	PDC/CRC

Note: To resume operation following a program stop, it is necessary to master clear and restart.

OPERATION CODE: 61

Instruction: PRINT (PR-v)

Replace (TWR) with the right-hand 6 bits of (v). Cause the typewriter to perform the operation corresponding to the 6-bit code.

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	Х
	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	х
	Wait Internal Reference	CTC-PDC	PDC
1	Test Lockout	MPD	PDC
2	Initiate Print (see note)	CTC-OUT	TWR
	Initiate Lockout TWC	CTC-OUT	PDC
3			
4			
5			

Note: On the INITIATE PRINT command (\mathbf{X}_0 through \mathbf{X}_5) is transferred to TWR.

OPERATION CODE: 63

Instruction: PUNCH (PUjv)

Replace (HPR) with the right-hand six bits of (v). Cause the punch to respond to (HPR). If j=0, omit seventh level hole; if j=1 include seventh level hole.

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	Х
	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	Х
	Wait Internal Reference	CTC-PDC	PDC
1	Test Lockout	MPD	PDC
2	Initiate High-Speed Punch (see note)	CTC-OUT	HPR
	Initiate Lockout HPC	CTC-OUT	PDC
3			
4			
5			

Note: On the INITIATE HIGH-SPEED PUNCH command (${\rm X_0}$ through ${\rm X_5}$) and UAK are transferred to HPR.

OPERATION CODE: 71

Instruction: MULTIPLY (MPuv)

Form in A the 72-bit product of (u) and (v), leaving in Q the multiplier (u).

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	Х
	Initiate Clear A	CTC-ARAC	ARAC
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
1	Clear Q	CTC-AR	Q
2	Transmit (X) to Q	CTC-AR	X
	Clear X	CTC-AR	X
3	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
5	Initiate Multiply	CTC-ASC	ASC
	Set SK to 36	CTC-SAR	SAR
	Extend Arithmetic Sequence	CTC-ASC	ASC
	Wait Internal reference	CTC-PDC	PDC

OPERATION CODE: 72

Instruction: MULTIPLY ADD (MAuv)

Add to (A) the 72-bit product of (u) and (v), leaving in Q the multiplier (u).

MP	COMMAND	SOURCE	DEST
0	Clear X	CTC-AR	Х
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	SCC
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
1	Clear Q	CTC-AR	Q
	Set SK to 36	CTC-SAR	SAR
2	Transmit (X) to Q	CTC-AR	X
	Clear X	CTC-AR	X
	Initiate Shift (A)	CTC-SKC	SKC
	Wait Internal Reference	CTC-PDC	PDC
3	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	х
	Wait Internal Reference	CTC-PDC	PDC
5	Initiate Multiply	CTC-ASC	ASC
	Set SK to 36	CTC-SAR	SAR
	Extend Arithmetic Sequence	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC

OPERATION CODE: 73

Instruction: DIVIDE (DVuv)

Divide the 72-bit number in A by (u), putting the quotient in Q and leaving in A a non-negative remainder, R. Then replace (v) by (Q). The quotient and remainder are defined by: $(A)_i = (u) \cdot (Q) + R$ where $0 \le R < |(u)|$. Here $(A)_i$ denotes the initial contents of A.

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	Х
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	Х
	Wait Internal Reference	CTC-PDC	PDC
1	Clear Q	CTC-AR	Q
	Set SK to 36	CTC-SAR	SAR
	Initiate Divide	CTC-ASC	ASC
	Extend Arithmetic Sequence	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
2	Clear X	CTC-AR	Х
3	Complement X	CTC-AR	X
5	Transmit (Q') to X'	CTC-AR	Q
	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Write (0-35)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC

OPERATION CODE: 74

Instruction: SCALE FACTOR (SFuv)

Replace (A) with D(u). Then left circular shift (A) by 36 places. Then continue to shift (A) until $A_{34} \neq A_{35}$. Then replace the right hand 15 bits of (v) with the number of shifts, k, which would be necessary to return (A) to its original position. If (A) is all ones, or all zeros, k=37. If u is A, (A) is left unchanged in the first step, instead of being replaced by $D(A_R)$.

MP	COMMA ND	SOURCE	DEST.
0	Clear X	CTC-AR	X
	Initiate Clear A	CTC-ARAC	ARAC
	Transmit UAK to SAR	CTC-PCR	UAK
	Initiate Read	CTC-SCC	SCC
	Clear X	CTC-AR	х
	Wait Internal Reference	CTC-PDC	PDC
1	Set SK to 36	CTC-SAR	SAR
	Add (X) to (A)	CTC-ASC	ASC
	Wait Internal Reference	CTC-PDC	PDC
2	Clear X	CTC-AR	Х
	Initiate Shift (A)	CTC-SKC	SKC
	Wait Internal Reference	CTC-PDC	PDC
3	Initiate Scale Factor	CTC-ASC	ASC
	Set SK to 36	CTC-SAR	SAR
	Wait Internal Reference	CTC-PDC	PDC
4	Transmit SAR to X	CTC-SAR	SAR
	Clear SAR	CTC-SAR	SAR
5	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Write (0-14)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC

OPERATION CODE: 75

Instruction: REPEAT (RPjnw)

This instruction calls for the next instruction (NIuv) to be executed n times, its u and v addresses being modified or not according to the value of j. Afterwards the program is continued by the execution of the instruction stored at a fixed address $F_1\boldsymbol{.}$ (See notes on following pages.)

MP	COMMAND	SOURCE	DEST.
0	Clear X.	CTC-AR	x
	Transmit VAK to SAR	CTC-PCR	VAK
1	Transmit SAR to X	CTC-SAR	SAR
	Set SAR to F_1	CTC-SAR	SAR
	Initiate Write (0-14)	CTC-SCC	scc
	Wait Internal Reference	CTC-PDC	PDC
2	Clear X	CTC-AR	X
	Transmit PAK to SAR	CTC-PAK	PAK
	Advance PAK	CTC-PAK	PAK
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
3	Clear PAK	CTC-PAK	PAK
	Initiate 75 Sequence (Set 75 FF to "1", Clear Hold Repeat FF, and initiate 2 us delay)	CTC-RSC	RSC/CRC
	Transmit UAK to SAR	CTC-PCR	UAK
	Clear PCR	CTC-PCR	PCR
4	Transmit SAR to PAK	CTC-SAR	SAR
5	Initiate Repeat	CTC-RSC	RSC
	Complement PAK	CTC-PAK	PAK
	Transmit (X) to PCR (Initiate 2 us delay)	CTC-AR	x/crc
	Wait RSC	CTC-PDC	PDC
7	Clear SAR	CTC-SAR	SAR

NOTES ON THE REPEAT INSTRUCTION

Because of the complexity of the Repeat instruction, the following paragraphs provide additional information on the execution of both the Repeat instruction and the repeated instruction. (Also see chart on Page 94.)

- 1. THE REPEAT INSTRUCTION. The Repeat instruction has the form 75jnw. The normal values of j, 0 through 3, determine the advance of the execution addresses of the repeated instruction. The code for j is as follows:
 - if j = 0, neither the u address nor the v address of the repeated instruction is advanced;

 - if j = 2, the u address of the repeated instruction is advanced after each execution;
 - if j = 3, both the u address and the v address of the repeated instruction are advanced after each execution.

It should be noted that the modification of the u address and v address is done in UAK and VAK, respectively; therefore, the original form of the instruction in its memory location is unaltered for possible future use.

The value of n determines the number of times the repeated instruction is to be executed. The value of n can vary throughout the range $0 \le n \le 212-1$, or from 0 through 4095. If n is zero, the repeat sequence is terminated immediately, and the following instruction is not executed since the next instruction is taken from fixed address F_1 ; in this case, the Repeat instruction performs the same function as would a Manually Selective Jump (45jv) in which the value of j is zero.

The repeat termination address w replaces the 15 lower-order bits of the fixed address F_1 (either 00000 or 40001 depending on the setting of the F_1 switch on the Supervisory Control Panel). Normally the address w at F_1 is referred to at the end of the repeated executions to provide the next program instruction; in some cases, however, the repeated executions are terminated differently.

During the execution of the Repeat instruction, the contents of PAK are replaced by jn, PAK is complemented, and then advanced by one. Then, the j portion of PAK (now complemented) is sent to RSC wherein the method of advancing UAK and VAK is determined. The n portion of PAK contains the complement of the original n plus one. It may be seen that (if PAK is advanced after each execution of the repeated instruction) after n executions the lower-order 12 stages of PAK will contain all zeros and a carry from PAK11 will be generated. It is this carry (the END REPEAT signal) that announces to RSC that the required number of executions has been completed and that a repeat termination is in order. Also, during the execution of the Repeat instruction, the 15-bit address w is stored at F1. This is not used until the repeated executions are completed

- at which time the contents of F_1 normally are taken as the next instruction. (F_1 usually contains a Manually Selective Jump instruction, 45jv, in which j is zero. The v address portion of 45jv is replaced by w during the execution of the Repeat instruction.)
- 2. THE REPEATED INSTRUCTION. Depending on the selection of the instruction to be repeated, a variety of results can be obtained. These can be divided into four cases:
- <u>CASE 1</u>. If the Interpret (14--), Return Jump (37uv), Q-Jump (44uv), Sign Jump (46uv), Zero Jump (47uv), Manually Selective Stop (56jv), or Program Stop (57--) instruction is chosen, the repeat sequence is automatically terminated since either RSC is cleared or the clock is stopped at the end of the first execution. Thus, these instructions behave as if no Repeat instruction preceded them. The termination is by the Instruction Reference Commands on page 7.
- <u>CASE 2.</u> If either the Index Jump (4luv) or the Manually Selective Jump (45jv) is selected, the instruction will be executed n times unless a jump is called for. If a jump is encountered, RSC is cleared and the jump is executed (no count of the number of times the instruction was executed is retained). If no jump is encountered during the n executions, a Repeat Termination of the repeat sequence is executed and the next instruction is taken from F_1 (see MP6 and MP7 on page 51).
- CASE 3. If either the Threshold Jump (42uv) or the Equality Jump (43uv) is selected, the instruction can be repeated or not repeated depending on whether or not a jump is called for. If a jump is executed before n executions or on the nth execution, the repeat sequence is terminated by a special sequence called the Jump Termination. This sequence stores the quantity j(n-r) in the Q Register and then performs the jump as prescribed. The contents of Q may then be referred to in the determination of the number of executions actually performed (by subtracting the n-r in Q from the original n). If n executions are performed and no jump condition is satisfied, the repeat sequence is terminated by the Normal Termination and the next instruction is taken from F_1 . The Jump Termination is shown on page 52.
- $\underline{\text{CASE 4.}}$ All other instructions, not referred to in the three cases above, will be executed n times as specified. After n executions, the repeat sequence is terminated by the Normal Termination and the next instruction is taken from F1.
- 3. MODIFIED COMMANDS. During each of the n executions of any repeated instruction (unless RSC has been cleared or a jump has been called for) some additional commands are produced on MP 5, MP 6 is omitted, and MP 7 is drastically changed. The following short table shows these changes.

TIMING SEQUENCES MODIFIED COMMANDS

MP	COMMAND	SOURCE	DEST.
5	Initiate End Test	CTC-RSC	RSC
	(in addition to usual Advance PAK MP5 commands)	CTC-PAK	PAK
	Wait RSC	CTC-PDC	PDC
7	Clear SAR (only)	CTC-SAR	SAR

The command INITIATE END TEST is used in RSC to initiate an RSC End Test (No Jump) Sequence as shown on page 96. If n-r is not zero, MPD is set to 7 and UAK and VAK are advanced according to the value of j. On MP 7, SAR is cleared in preparation for the succeeding execution of the repeated instruction. If n-r is zero, the Normal Termination is executed using both MP 6 and MP 7. If RSC has been cleared prior to MP 5, the commands above are not issued but the normal Instruction Reference Commands conclude the execution, and the next instruction is taken from the address specified in VAK. If, during the repeated execution of a Threshold Jump instruction or an Equality Jump instruction, a jump is called for, MP 5 produces the commands which initiate the End Test and advance PAK; however, the actual End Test is superseded by the Jump Termination sequence which is also initiated on MP 5.

- 4. FINAL TERMINATIONS. As indicated above, all repeated sequences are not terminated alike. There are three possible terminations; these are discussed in the subparagraphs below.
- a. REPEAT TERMINATION. At the occurrence of MP 5, an "end test" is made during each repeated execution. This test determines whether or not the nth execution has just been concluded. If n executions have been completed, the Repeat Termination sequence follows MP 5 as shown in the table below.

	REPEAT TERMINATION SEQUENCE COMMAND	SOURCE	DEST.
MP6	Set SAR to Fixed Address F1	CTC-SAR	SAR
	Clear PCR	CTC-PCR	PCR
	Clear RSC	CTC-RSC	RSC
	Initiate Read	CTC-SCC	scc
	Clear X	CTC-AR	Х
	Wait Internal Reference	CTC-PDC	PDC
MP7	Clear SAR	CTC-SAR	SAR
	Transmit (X) to PCR (Initiate 2 μ s delay)	CTC-AR	x/crc

This sequence sets SAR to the Fixed Address F_1 (00000 or 40001) wherein the address w replaced the v address portion of the former contents. Normally, F_1 contains a 45jv (Manually Selective Jump) instruction (j is zero) which will cause a jump to the address specified by the w of the Repeat instruction, and the program will proceed from the instruction stored at address w. (It should be noted that any jump instruction can be used provided that a jump does occur; if a jump does not occur, the contents of PAK will be unaltered giving rise to a subsequent erroneous program continuation.)

b. JUMP TERMINATION. - The Jump Termination is used to conclude the Threshold Jump (42uv) and the Equality Jump (43uv) only if the threshold or equality conditions call for a jump operation before or just after n executions. The Jump Termination sequence is initiated in RSC by an INITIATE JUMP TERMINATE command from CTC. This command is produced by MP 5 if the jump condition is satisfied; the INITIATE END TEST and the ADVANCE PAK commands are also produced on MP5 but are disregarded if the INITIATE JUMP TERMINATE command is produced. The repeat sequence is modified thereby as shown in the table, RSC END TEST (WITH JUMP) SEQUENCE, on page 97. This sequence clears X and sets MPD to 1 in preparation for the Jump Termination sequence as shown in the table below.

MP	JUMP TERMINATION SEQUENCE COMMAND	SOURCE	DEST
1	Transmit SAR to X	CTC-SAR	SAR
	Clear SAR	CTC-SAR	SAR
	Clear PAK	CTC-PAK	PAK
	Clear Q	CTC-AR	Q
2	Transmit (X) to Q	CTC-AR	Х
	Transmit VAK to SAR	CTC-PCR	VAK
3			
4			
5	Transmit SAR to PAK	CTC-SAR	SAR

This sequence places j(n-r) in Q (effected by the transmissions PAK to SAR, SAR to X, and (X) to Q; the transmission PAK to SAR occurs on MP 5 of the last repeated execution of the instruction in which the threshold or equality condition was met). Then, the v address of the repeated instruction is inserted in PAK (CLEAR PAK, TRANSMIT VAK TO SAR and TRANSMIT SAR TO PAK) from which the next instruction will be taken. The v address of the repeated instruction may or may not be advanced depending on the selection of the j value in the Repeat instruction. The Jump Termination sequence is concluded by the normal Instruction Reference Commands as given on page 7.

c. OTHER TERMINATIONS. - All stop or jump instructions (other than 42uv and 43uv) either stop the clock or clear RSC, both of which terminate the repeat sequence immediately. These instructions are concluded by the Instruction Reference Commands on page 7 as if no Repeat instruction preceded them.

ABNORMALITIES.

<u>CASE.1.</u> If the Fixed Address F₁ does not contain a jump instruction or if a jump is not effected by the execution of the instruction at F₁, the instruction following the instruction at F₁ will be taken from the unaltered PAK. The address therein will be the complement of the j of the Repeat instruction as modified by the PAK₁₁ CARRY produced as n becomes zero. The PAK₁₁ CARRY goes to PAK₁₂ and PAK₁₃ as well as to RSC as the END REPEAT SIGNAL. However, the carry to PAK₁₄ is automatically blocked because of the nature of PAK, and, therefore, its contents will be unaltered by a carry from PAK₁₃. As a result, the following addresses will be produced for the various normal values of j:

j = 0, address will be 40000 j = 1, address will be 70000 j = 2, address will be 60000

j = 3, address will be 50000.

CASE 2. Values of j in excess of 3, i.e., j equals 4, 5, 6, or 7, will set up an unterminated repeat sequence. In each instance, PAK₁₄ will contain a zero after PAK is complemented. A zero in PAK14 blocks the carry from PAK9 to PAK₁₀ thus causing a closed loop in PAK₀ through PAK₉. Because this carry is blocked, there will be no carry from PAK11 which is the END REPEAT signal to RSC, and thus the repeat sequence cannot be terminated unless a jump or a stop As in the case of j being 0, 1, 2, or results from the repeated instruction. 3, the values 4, 5, 6, or 7 will advance the u address and v address in a corre-If j is 4, neither will be advanced; if j is 5 only the sponding manner. if j is 6 only the u address will be advanced; v address will be advanced; j is 7 both addresses will be advanced. These abnormal values of j have a practical application in the TEST mode of operation; in manual reading to or writing from the O Register such an unterminated repeat sequence is used ad-If the u or v address is in the MD range, the address can be advanced through the complete range 40000 through 77777, and the next advance will return the address to 40000 since there is no carry from the 13th stage to the 14th stage in either UAK or VAK. If the u or v address is in the rapid access storage range (00000 through 01777) or the 0 address or A address, the address will be advanced only through 1024 addresses and then start over. This is due to the blocking of the carry between the 9th and 10th stages if the 14th stage contains a zero.

<u>CASE 3.</u> If a Repeat instruction is followed immediately by another Repeat instruction, the second will supersede the first and the address of the repeated instruction is determined by the address in PAK. This address is the complement of j(n-1) which remains in PAK as a residue of the first Repeat Instruction.

OPERATION CODE: 76

Instruction: EXTERNAL READ (ERjv)

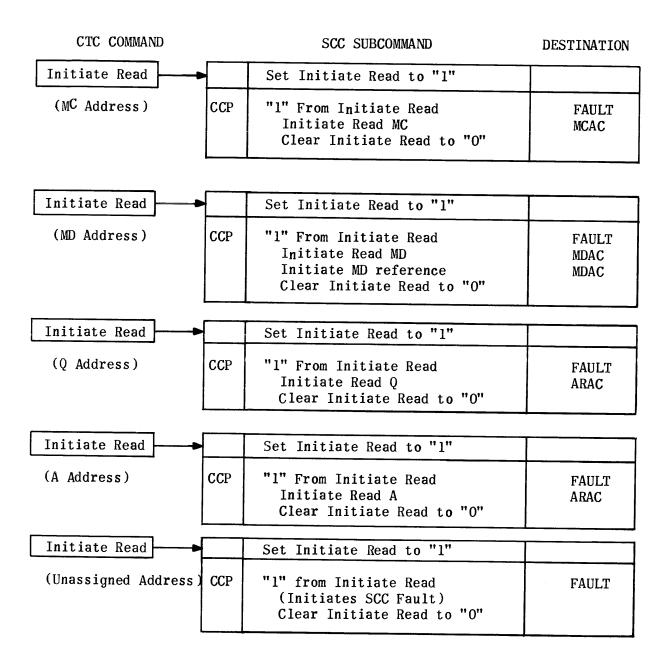
If j=0, replace the right-hand 8 bits of (v) with (IOA); if j=1, replace (v) with (IOB). If the external unit utilizes step-by-step operation, advance one step.

MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	X
1	Test Input/Output Lockouts	MPD	PDC
5	Transmit IOA (or IOB) to X	CTC-IO	IOA(IOB)
	Clear IOA (or IOB)	CTC-IO	10A(10B)
	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Write	CTC-SCC	SCC
	Wait Internal Reference	CTC-PDC	PDC
	Initiate Lockout IOA (or IOB) Read	CTC-IO	PDC

OPERATION CODE: 77

Instruction: EXTERNAL WRITE (EWjv)

If j=0, replace (IOA) with the right-hand 8 bits of (v); if j=1, replace (IOB) with (v). Cause the previously selected unit to respond to the information in IOA or IOB.


MP	COMMAND	SOURCE	DEST.
0	Clear X	CTC-AR	X
·	Transmit VAK to SAR	CTC-PCR	VAK
	Initiate Read	CTC-SCC	SCC
	Clear X	CTC-AR	X
	Wait Internal Reference	CTC-PDC	PDC
1	Test Input/Output Lockouts	MPD	PDC
5	Transmit (X) to IOA (or IOB)	CTC -10	IOA(IOB)
	Set IOA Write FF (or IOB Write FF)	CTC-IO	IOA(IOB)
	Initiate Lockout IOA (or IOB) Write	CTC-10	PDC

SUBCOMMAND TIMING SEQUENCES

The Subcommand Timing Sequences presented on the following pages generate minor sequences which complete major sequences generated by the Command Timing Each Subcommand Timing Sequence is initiated either by a command from CTC or by a subcommand from another of the Subcommand Timing Sequences. An an example, the following is given: In the instruction Transmit Positive (11uv) on page 8, the command INITIATE READ is produced on MP 0. DEST. column. SCC is given as the destination. On page 57 the SCC Initiate Read Sequences are given. According to the storage class represented by the u address, one of the five sequences listed is selected. Assuming that an MD address is represented, the subcommands INITIATE READ MD nnd INITIATE MD REFERENCE have MDAC as a destination. The proper MDAC table is given on page 62 wherein the actual MD reading sequence is accomplished. The MD RESUME signal, produced on CP-O when an address coincidence is detected, goes to PDC allowing MP 5 to be issued to CTC thus negating the WAIT INTERNAL REFERENCE produced on MP O as a result of the INITIATE READ signal. It may be seen in the foregoing that two Subcommand Timing Sequences were generated; result of a CTC command, one as a result of an SCC subcommand.

It should be noted in using the following tables that the first table entries are produced as a result of and at the same time as the initiating command or subcommand. The succeeding entries are produced either by CONTROLLED CLOCK PULSES or by pulses from several of the minor pulse distributors. These statements apply especially to the ARAC and ASC subsequences wherein no clock pulse columns are given. In all cases, horizontal lines separate the timing periods.

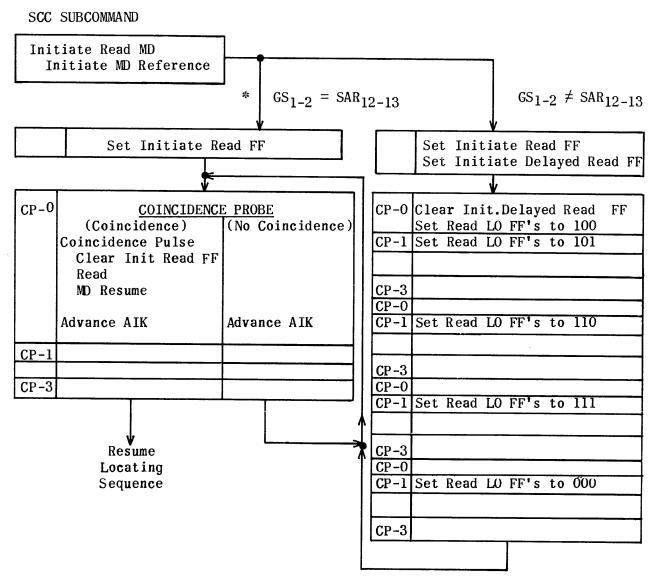
SCC INITIATE READ SEQUENCES

SCC INITIATE WRITE (0-35) SEQUENCES

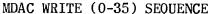
CTC COMMAND		SCC SUBCOMMAND	DESTINATION
Initiate Write (0-35)		Set Initiate Write to "1"	
(MC Address)	ССР	"l" From Initiate Write Initiate Write MC Clear Initiate Write to "O"	FAULT MCAC
	r		1
Initiate Write (0-35) →		Set Initiate Write to "1"	
(MD Address)	ССР	"l" From Initiate Write Initiate Write MD Initiate MD Reference Clear Initiate Write to "O"	FAULT MDAC MDAC
Initiate Write (0-35)		Set Initiate Write to "1"	
(Q Address)	ССР	"l" From Initiate Write Initiate Write Q Clear Initiate Write to "O"	FAULT ARAC
Initiate Write (0-35) →		Set Initiate Write to "1"	
(A Address)	ССР	"l" From Initiate Write Initiate Write A Clear Initiate Write to "O"	FAULT ARAC
Initiate Write (0-35) →		Set Initiate Write to "1"	
(Unassigned Address)	CCP	"l" From Initiate Write (Initiates SCC Fault) Clear Initiate Write to "0"	FAULT

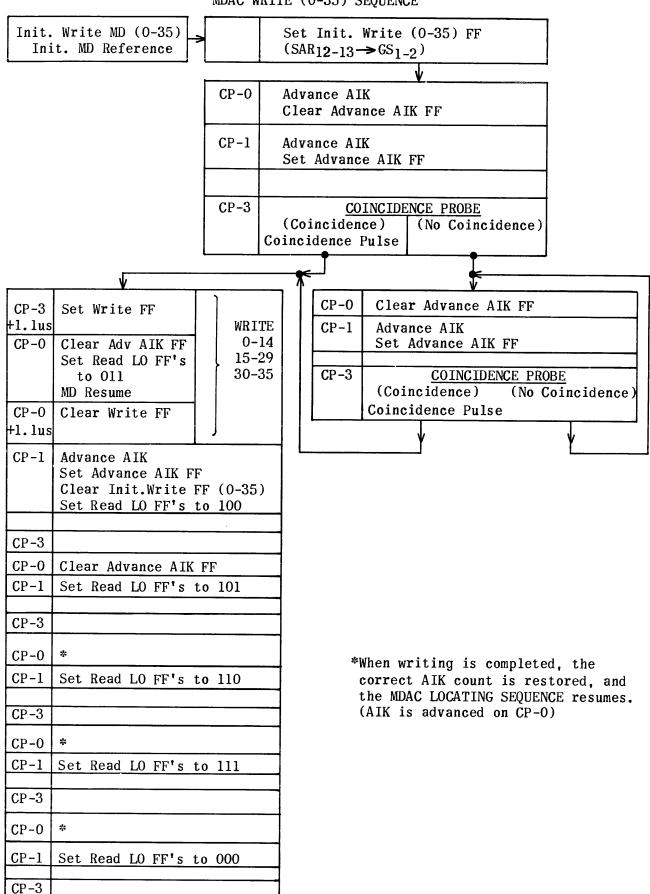
SCC INITIATE WRITE (0-14) SEQUENCES

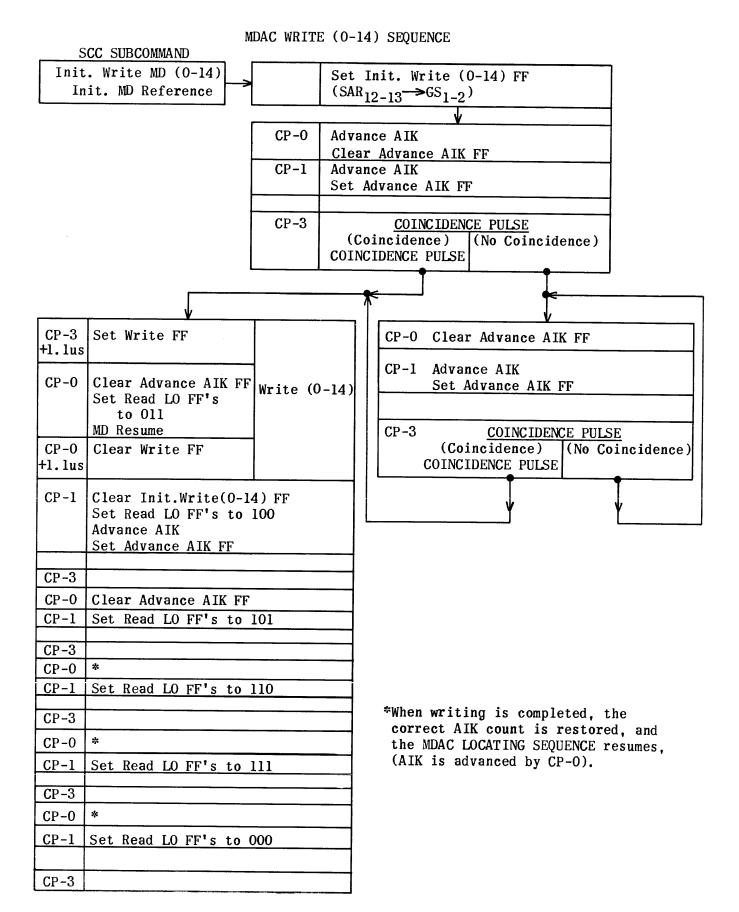
	•	
CTC COMMAND	C COMMAND SCC SUBCOMMAND	
Initiate Write (0-14) →	Set IW (0-14) to "1"	
(MC Address) CCP	"1" From IW (0-14) Initiate Write MC (0-14) Clear IW (0-14) to "0"	FAULT MCAC
Initiate Write (0-14) →	Set IW (0-14) to "1"	
(MD Address) CCP	"1" From IW (0-14) Initiate Write MD (0-14) Initiate MD Reference Clear IW (0-14) to "0"	FAULT MDAC MDAC
Initiate Write (0-14) ▶	Set IW (0-14) to "1"	
(All other Addresses) CCP	"1" From IW (0-14) (Initiates SCC Fault) Clear IW (0-14) to "0"	FAULT

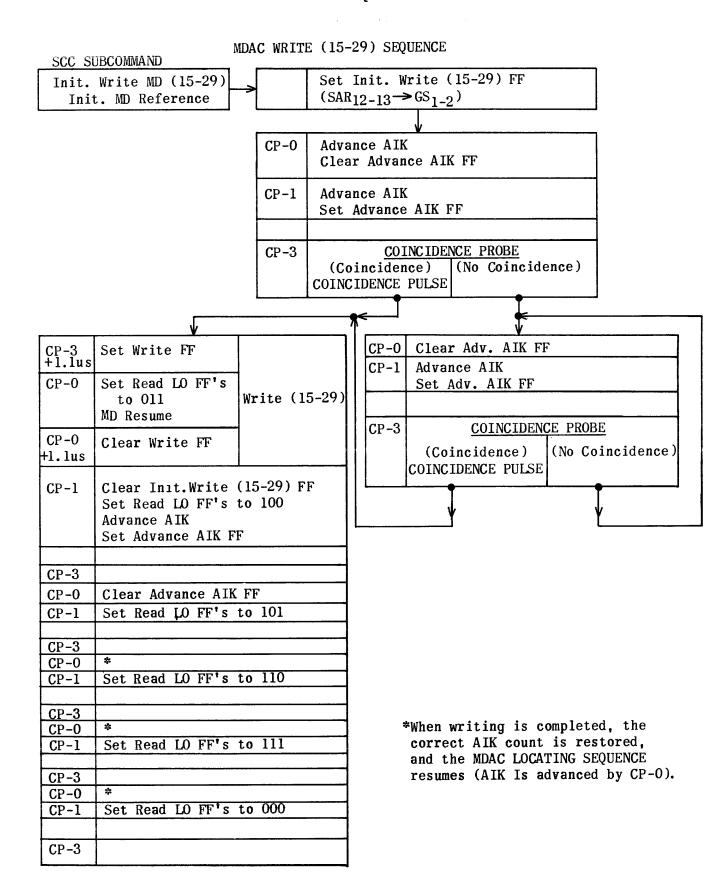

SCC INITIATE WRITE (15-29) SEQUENCES

CTC COMMAND		SCC SUBCOMMAND	DESTINATION
Initiate Write (15-29)	·	Set IW (15-29) to "1"	
(MC Address)	CCP	"1" From IW (15-29) Initiate Write MC (15-29) Clear IW (15-29) to "0"	FAULT MCAC
Initiate Write (15-29)		Set IW (15-29) to "1"	
(MD Address)	ССР	"l" From IW (15-29) Initiate Write MD (15-29) Initiate MD Reference Clear IW (15-29)	FAULT MDAC MDAC
			•
Initiate Write (15-29)		Set IW (15-29) to "1"	
(All other Addresses)	ССР	"1" From IW (15-29) (Initiates SCC Fault) Clear IW (15-29)	FAULT


	MDAC LOCATING SEQUENCE					
Mark Pulse	Set Preset FF					
CP-0	Preset AIK to 1's Set Coincidence Lockout FF Clear Preset FF Clear Advance AIK FF					
CP-1	Clear Advance AIK FF					
CP-3						
CP-0	Advance AIK AIK End Carry Clear Coincidence Lockout FF					
	Clear Advance AIK FF					
CP-1	*					
CP-3						
CP-0	Advance AIV					
CP-0	Advance AIK Clear Advance AIK FF					
CP-1	*					
92.0						
CP-3						
	AIK ≠ 4095					
CP-0	Advance AIK AIK End Carry Clear Coincidence Lockout FF Clear Advance AIK FF					
CP-1	*					
CP-3						
	V					


 $[\]mbox{*}$ If the Read Lockout FF's are not all set to zero, CP-1 will advance these FF's until their count is 000.


MDAC READ SEQUENCE



* It should be noted that even though ${\rm GS}_{1-2}={\rm SAR}_{12-13}$, if a read operation follows a write operation before approximately 40 usec have elapsed, all or a portion of the Read LO FF counting delay $({\rm GS}_{1-2} \neq {\rm SAR}_{12-13})$ will be carried out until each Read LO FF is in its "0" state.

MC READ SEQUENCE

SCC SUBCOMMAND	MCP	MCAC SUBCOMMAND
INT. READ MCS SAR→AR* **WAIT INIT WAIT "1" INIT "0	MCP-O	Set MCPD TO 1 Set WAIT INITIATE FF Set READ/WRITE ENABLE FF (Begin READ ENABLE)
INIT 2MS	MCP-1	Set MCPD TO 2 Set MONITOR INTENSITY FF Set READ PULSE FF (Begin READ PULSE)
DELAY	MCP-2	Set MCPD TO 3 Clear READ PULSE FF (End READ PULSE)
	MCP-1 + $2.3~\mu \mathrm{sec.}$ delay	READ MCS→X Sample GATES; READ/RESTORE MCS 0-14, READ/RESTORE MCS 15-29, and READ/RESTORE MCS 30-35
	MCP-2 + .6 $\mu \rm{sec.}$ delay	Set ENABLE INHIBIT-DISTURB FF (Begin INHIBIT-DISTURB ENABLE) (Begin INHIBIT PULSE)
	MCP-3	Set MCPD TO 4 Set WRITE PULSE FF (Begin WRITE PULSE) MCS RESUME
	MCP-4	Set MCPD TO 0 Clear WRITE PULSE FF (End WRITE PULSE) Clear all INPUT REGISTER FF's (Begin DISTURB PULSE) Clear MONITOR INTENSITY FF Clear ENABLE INHIBIT-DISTURB FF (End DISTURB PULSE)
	MCP-4 + .ό μsec. delay	Clear READ/WRITE ENABLE FF (End READ/WRITE ENABLE)
	MCP-4 + $2.0~\mu \mathrm{sec.}$ delay	Clear WAIT INITIATE FF
*SAR→AR is generat	ed in SCC	

^{*}SAR→AR is generated in SCC

^{**}If the SCC subcommand is prior to or simultaneous with MCP-4 + 2.0 μ sec of a previous MC storage reference, a 2 μ sec delay is introduced, i.e., if MC storage references are initiated on consecutive MP's, a 2 μ sec delay is imposed between the consecutive storage references.

MC WRITE (0-14) SEQUENCE

SCC SUBCOMMAND	MCP	MCAC SUBCOMMAND
INIT. WRITE MCS 0-14 SAR→AR* **WAIT INIT WAIT "1" INIT "0' INIT 2MS DELAY	(MCP-0)	Set MCPD TO 2 Set WAIT INITIATE FF Set WRITE/RESTORE 0-14 FF Set READ/WRITE ENABLE FF (Begin READ ENABLE)
	MCP-1	Set MCPD TO 2 Set MONITOR INTENSITY FF Set READ PULSE FF (Begin READ PULSE)
	MCP-2	Set MCPD TO 3 Clear READ PULSE FF (End READ PULSE) Sample GATES; WRITE MCS 0-14, WRITE MCS 15-29, and WRITE MCS 30-35
	MCP-1 + $2.3~\mu \mathrm{sec.}$ delay	Sample GATES; READ/RESTORE MCS 0-14, READ/RESTORE MCS 15-29, and READ/RESTORE MCS 30-35 RESTORE MCS 15-29 RESTORE MCS 30-35
	MCP-2 + $\mu sec.$ delay	Set ENABLE INHIBIT-DISTURB FF (Begin INHIBIT-DISTURB ENABLE) (Begin INHIBIT PULSE)
	MCP-3	Set MCPD TO 4 (Begin WRITE MCS 0-14 (PULSE) MCS RESUME
	MCP-4	Set MCPD TO 0 Clear WRITE PULSE FF (End WRITE MCS 0-14 PULSE) Clear all INPUT REGISTER FF's (Begin DISTURB PULSE) (Clear WRITE/RESTORE 0-14 FF) Clear MONITOR INTENSITY FF Clear ENABLE-INHIBIT-DISTURB FF
	MCP-4 + .6 $\mu \mathrm{sec}$. delay	Clear READ/WRITE ENABLE FF (End WRITE ENABLE)
SCAD > AD in many	MCP-4 + $2.0~\mu \mathrm{sec.}$ delay	Clear WAIT INITIATE FF

^{*}SAR→AR is generated in SCC

^{**}If the SCC subcommand is prior to or simultaneous with MCP-4 + 2.0 μ sec of a previous MC storage reference, a 2 μ sec delay is introduced, i.e., if MC storage references are initiated on consecutive MP's, a 2 μ sec delay is imposed between the consecutive storage references.

MC WRITE (15-29) SEQUENCE

SCC SUBCOMMAND	MCP	MCAC SUBCOMMAND
INIT WRITE MCS 15-29 SAR → AR* **WAIT INIT WAIT "1" INIT "0" INIT 2MS DELAY	(MCP-O)	Set MCPD TO 1 Set WAIT INITIATE FF Set WRITE/RESTORE 15-29 FF Set READ/WRITE ENABLE FF (Begin READ ENABLE)
	MCP-1	Set MCPD TO 2 Set MONITOR INTENSITY FF Set READ PULSE FF (Begin READ PULSE)
	MCP-2	Set MCPD TO 3 Clear READ PULSE FF (End READ PULSE) Sample GATES; WRITE MCS 0-14,WRITE MCS 15-29 and WRITE MCS 30-35.
	MCP-1 + 2.3 μ sec. delay	Sample GATE READ/RESTORE MCS 0-14, READ/RESTORE MCS 15-29, and READ/RESTORE MCS 30-35 RESTORE MCS 0-14 RESTORE MCS 30-35.
	MCP-2 + .6 μ sec.	Set ENABLE INHIBIT-DISTURB FF (Begin INHIBIT-DISTURB ENABLE) (Begin INHIBIT PULSE)
	MCP-3	Set MCPD TO 4 Set WRITE PULSE FF (Begin WRITE MCS 15-29 PULSE) MCS RESUME
	MCP-4	Set MCPD TO 0 Clear WRITE PULSE FF (End WRITE MCS 15-29 PULSE) Clear all INPUT REGISTER FF's (Begin DISTURB PULSE) Clear WRITE/RESTORE 15-29 FF Clear ENABLE INHIBIT-DISTURB FF Clear MONITOR INTENSITY FF
	MCP-4 + .6 $\mu sec.$ delay	Clear READ/WRITE ENABLE FF (End READ/WRITE ENABLE)
*SAR AR is gonorate	MCP-4 + $2.0~\mu { m sec.}$ delay	Clear WAIT INITIATE FF

^{*}SAR \longrightarrow AR is generated in SCC

^{**}If the SCC subcommand is prior to or simultaneous with MCP-4 + 2.0 $\mu {
m sec}$ of a previous MC storage reference, a 2 μsec delay is introduced, i.e., if MC storage references are initiated on consecutive MP's, a 2 μsec delay

is imposed between the consecutive storage references.

MCS WRITE (0-35) SEQUENCE

SCC SUBCOMMAND	MCP	MCAC SUBCOMMAND
INIT. WRITE MCS SAR→AR* **WAIT INIT WAIT "1" INIT "0"	(MCP-0)	Set MCPD TO 1 Set WAIT INITIATE FF Set WRITE/RESTORE 0-14 WRITE/RESTORE 15-29, and WRITE/RESTORE 30-35 FF's Set READ/WRITE ENABLE FF (Begin WRITE ENABLE).
INIT 2MS	MCP-1	Set MCPD TO 2 Set MONITOR INTENSITY FF Set READ PULSE FF (Begin READ PULSE).
DELAY	MCP-2	Set MCPD TO 3 Clear READ PULSE FF (End READ PULSE) Sample GATES WRITE MCS 0-14, WRITE MCS 15-29 and WRITE MCS 30-35.
	MCP-1 + $2.3~\mu \mathrm{sec.}$ delay	Sample GATE; READ/RESTORE MCS 0-14, READ/RESTORE MCS 15-29, and READ/ RESTORE MCS 30-35.
	MCP-2 + .6 $\mu \mathrm{sec.}$ delay	Set ENABLE INHIBIT-DISTURB FF (Begin INHIBIT-DISTURB ENABLE) (Begin INHIBIT PULSE)
	MCP-3	Set MCPD TO 4 Set WRITE PULSE FF (WRITE MCS 0-14, WRITE MCS 15-29, WRITE MCS 30-35) MCS RESUME
	MCP-4	Set MCPD TO 0 Clear WRITE PULSE FF Clear all INPUT REGISTER FF's (Begin DISTURB PULSE) Clear WRITE/RESTORE 0-14 WRITE/RESTORE 15-29 and WRITE/RESTORE 30-35 FF's Clear MONITOR INTENSITY FF Clear ENABLE INHIBIT/DISTURB FF
	MCP-4 + .6 $\mu \mathrm{sec.}$ delay	Clear READ/WRITE ENABLE FF (End READ/WRITE ENABLE)
	MCP-4 + $2.0~\mu sec.$ delay	Clear WAIT INITIATE FF

^{*}SAR → AR is generated in SCC

^{**}If the SCC subcommand is prior to or simultaneous with MCP-4 + 2.0 μ sec. of a previous MC storage reference, a 2 μ sec delay is introduced, i.e., if MC storage references are initiated on consecutive MP's, a 2 μ sec delay

is imposed between the consecutive storage references.

ARAC READ SEQUENCE

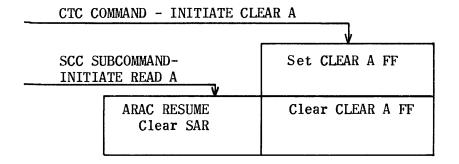
INSTRUCTION 27

Q REFERENCE

CTC	CTC COMMAND - INITIATE CLEAR A				
	SUBCOMMAND -	Set CLEAR A FF			
INI	CIATE READ Q				
	V				
	COMPLEMENT X	CLEAR A _R			
	Set READ Q FF	Clear CLEAR A FF			
	Q'→ X'				
	Clear READ Q FF				
	ARAC RESUME Clear SAR				
	Olcai DAII				
Į					

A REFERENCE

SCC SUBCOMMANDINITIATE CLEAR A Set CLEAR A FF INITIATE READ A ARAC RESUME Clear SAR Clear AR Clear AR


ARAC READ SEQUENCE

INSTRUCTION 41, 54, OR 74

Q REFERENCE

CTC	CTC COMMAND - INITIATE CLEAR A			
		V		
	SUBCOMMAND_ TIATE READ Q	Set CLEAR A FF		
	COMPLEMENT X Set READ Q FF	CLEAR A _R CLEAR A _L Clear CLEAR A FF		
	Q'──X' Clear READ Q FF ARAC RESUME Clear SAR	 		

A REFERENCE

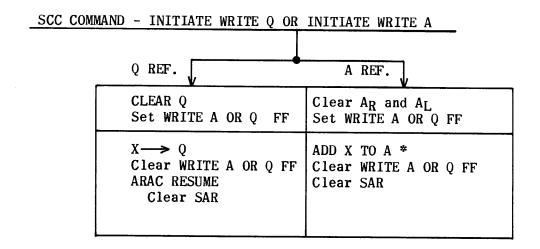
ARAC READ SEQUENCE

INSTRUCTION 21, 23, 31, 33, 51, 53, OR 71

Q REFERENCE

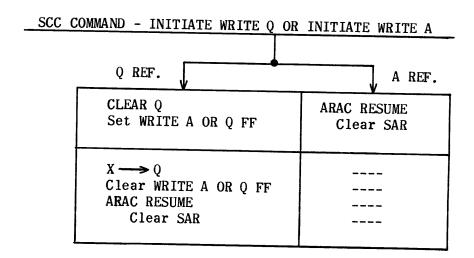
CTC COMMAND - INITIATE CLEAR A					
SCC SUBCOMMAND- INITIATE READ Q	Set CLEAR A FF				
COMPLEMENT X Set READ Q FF	CLEAR A _R CLEAR A _L Clear CLEAR A FF				
Q'→>X' Clear READ Q FF ARAC RESUME Clear SAR	 				

A REFERENCE


CTC COMMAND - INITIATE	CLEAR A
SCC SUBCOMMAND- INITIATE READ A	Set CLEAR A FF
A _R ->X ARAC RESUME Clear SAR	CLEAR A _R CLEAR A _L Clear CLEAR A FF

ARAC READ SEQUENCE ALL OTHER INSTRUCTIONS

Q REF. COMPLEMENT X Set READ Q FF Q'—> X' Clear SAR Q'—> X' Clear READ Q FF ARAC RESUME Clear SAR Clear SAR Clear SAR Clear SAR Clear SAR


ARAC WRITE SEQUENCE

INSTRUCTION 11, 12, 13, 55, 73, OR 76

*Note: The ADD X TO A signal to ASC eventually generates an ASC RESUME rather than an ARAC RESUME.

ARAC WRITE SEQUENCE ALL OTHER INSTRUCTIONS

TYPEWRITER SEQUENCES

CTC COMMAND	EVENT	RESULTS
X-TWR & Initiate Print		$(X_0 - X_5) \longrightarrow TWR$ Energizes appropriate TWR relays (K30064-K30069), and Reader Clutch (LRC).
	TWR relays energized	Energizes appropriate impossible Print and Function Translator relays (K26107-K26113). Closes contacts in circuits of appropriate Code Translator Solenoids (LT1 - LT6)
	Reader Clutch energized	Initiates cycle in type- writer
	Typewriter cycle initiated	Reader Common Contacts close
	Reader Common Contacts closed	Energize Enable Impossible Print relay (K26102), Trans- lator Clutch (L _{TC}), Code Translator Solenoids, and Character Acknowledge relay (K26103)
	Enable Impossible Print, and Impossible Print and Function Translator relays energized	Translates code held in TWR and detects one of three possible conditions: 1. No circuit through translator, Character Sequence is followed (see a. below).
	·	2. Circuit through trans- lator energizes Function relay (K26101), Function Sequence is followed (see b. below).
		3. Circuit through trans- lator energizes Impos- sible Print relay (K26106), Impossible Print Sequence is fol- lowed (see c. below).
		NOTE: See d. below for typewriter code. Any code not listed is invalid and results in an Impossible Print Sequence

TYPEWRITER SEQUENCES (Cont.)

a. Character Sequence (All operations except Impossible Print, Carriage Return, and Tab.)

EVENT	RESULTS
Translator Clutch and Code Translator Solenoids energized	Causes typewriter to perform the appropriate operation.
Character Acknowledge relay energized	De-energizes Acknowledge I relay (K26104)
Acknowledge I relay de-energized	De-energizes Acknowledge II relay. Momentarily removes +80V from TWR relays, and Reader Clutch, causing them to de-energize, and extinguishes TWR thyratrons thus clearing TWR.
TWR relays de-energized	De-energizes Code Translator relays, and Impossible Print and Function Translator relays.
Reader Clutch de-energized	Prevents initiation of another typewriter cycle until another print command is received from CTC.
Reader Common Contacts open	De-energize Translator Clutch, Character Acknowledge relay, and Enable Impossible Print Relay
Character Acknowledge relay de-energized	Energize Acknowledge I relay.
Acknowledge I relay energized	Energize Acknowledge II relay. Fires thyratron to produce TWC RESUME (to PDC).

TYPEWRITER SEQUENCES (Cont.)

b. Function Sequence(Carriage Return and Tab Only)

EVENT	RESULTS
Function relay energized	Closes hold-in contact through Carriage Return Contact. Opens contact in TWC RESUME circuit.
Translator Clutch and Code Translator Solenoids energized	Causes typewriter to perform the appropriate operation
Character Acknowledge relay energized	De-energizes Acknowledge I relay (K26104).
Acknowledge I relay de-energized	De-energizes Acknowledge II relay. Momentarily removes +80V from TWR relays, and Reader Clutch causing them to de-energize, and extinguishes TWR thyratrons thus clearing TWR.
TWR relays de-energized	De-energizes Code Translator Solenoids and Impossible Print and Function Translator relays.
Reader Clutch de-energized	Prevents initiation of another typewriter cycle until another print command is received from CTC.
Carriage Return Contacts open	De-energizes Function Relay.
Function relay de- energized	Closes contact in TWC RESUME circuit.
Reader Common Contacts open	De-energize Translator Clutch, Character Acknow- ledge relay, and Enable Impossible Print relay.
Character Acknowledge relay de-energized	Closes contact in circuit of Acknowledge I relay.
Carriage Return Contacts close	Energizes Acknowledge I relay.
Acknowledge I relay energized	Energizes Acknowledge II relay. Fires thyratron to produce TWC RESUME (to PDC).

TYPEWRITER SEQUENCES (Cont.)

c. Impossible Print Sequence

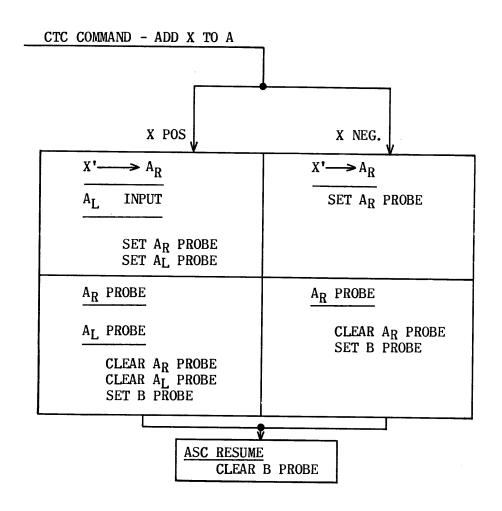
EVENT	RESULTS
Impossible Print relay energized	Closes hold-in contact for itself. Closes hold-in contact for Acknowledge I relay (K26104) thus holding it energized and preventing a clearing of TWR and a TWC RESUME. De-energizes Reader Clutch. Energizes Impossible Print Fault relay (K30062 in Fault Detector).
Impossible Print Fault relay energized	Causes "A" Fault in Main Equipment.
Reader Clutch de- energized	Prevents initiation of another typewriter cycle until another print command is received from CTC. (In addition the Impossible Print relay (K26106) must be de-energized by clearing the fault.)

TYPEWRITER SEQUENCE (Concl.)

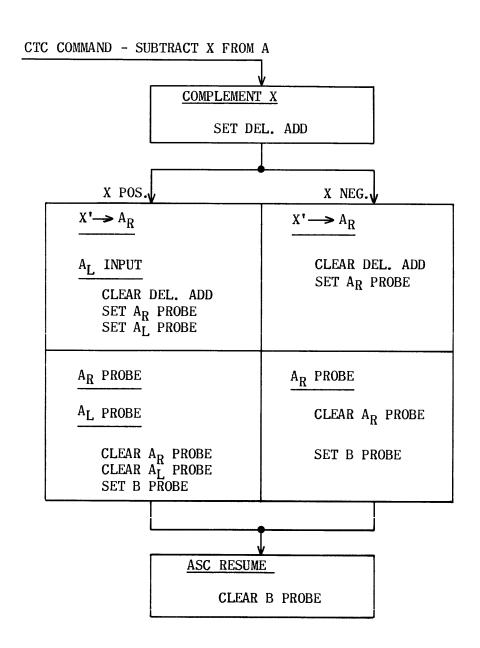
d. Typewriter Code

	LETTERS	5		NUMBERS		OPERA	TIONS
UPPER CASE A B C D E F G H I	LOWER CASE a b c d e f g h i	OCTAL CODE 30 23 16 22 20 26 13 05 14 32 36	UPPERCASE 1 2 3 4 5 6 7 8 9	LOWER <u>CASE</u> 1 2 3 4 5 6 7 8 9 0	OCTAL <u>CODE</u> 52 74 70 64 62 66 72 60 33 37	TYPEWRITER OPERATION SPACE SHIFT UP SHIFT DOWN BACK SPACE CAR. RET. TAB. COLOR SHIFT	OCTAL <u>CODE</u> 04 47 57 61 45 51 02
K L	k l	36 11		SIGNS		EXPLANATION OF	FSIGNS
M	m	07	UPPER	LOWER	OCTAL	UPPER	LOWER
N	n	06	CASE	CASE	CODE	CASE	CASE
0	0	03					
Р	р	15	-	-	56	Superscript	Hyphen
ର	q	35				Minus	or Minus
R	r	12	•	==	44	Multiply	Equals
S T	s t	$\begin{array}{c} 24 \\ 01 \end{array}$,		E 4	Winau lo	Plus
U	u	34	/	+	54	Virgule	Plus
l v	v	17			46	Open Parens	Comma
W	w	31	ii `	,	40	open rurens	Oomma
X	x	27)	•	42	Close Parens	Period
Y	У	25	′	ŕ			
Z	z	21			50	Underline	Absolute

HIGH-SPEED PUNCH SEQUENCE

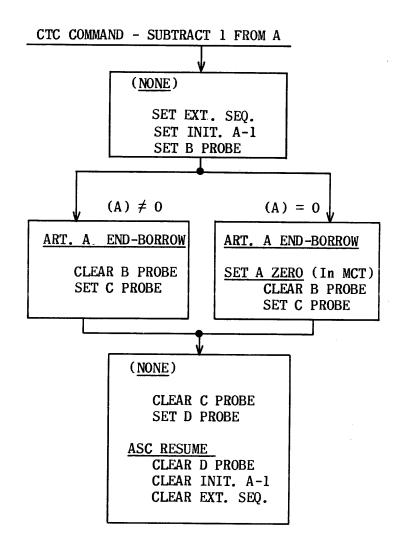

CTC COMMAND	Event	Results
X—>HPR & Init. High-Speed PUNCH		Sets Init. HSP FF. x_0 - x_5 and $vac{VAK}_{12}$ + $vac{VAK}_{12}$
	Next closing of punch sync. contacts when Init. HSP is set to "1"	Fires thyratrons, energizing Tape Level and Tape Feed Solenoids, operating punch. Clears Init. HSP FF. Sets HPC Resume FF. Clears HPR.
	Sync. contacts open	Extinguishes Tape Level and Tape Feed Solenoid relay pullers. Produces HPC Resume (to PDC).
	HPC Resume	Clears HPC Resume FF.

ARITHMETIC SEQUENCE CONTROL TIMING SEQUENCES

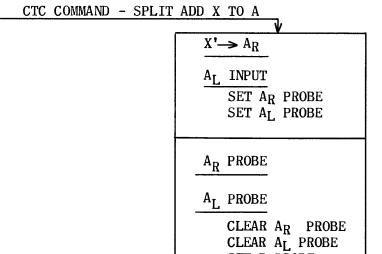

The following pages are slightly different in format from those previously encountered. In the following tabulations only signals are listed (their corresponding events are obvious in almost every case). In order to separate those subcommands which are issued from the ASC and those used solely within the ASC, the following format has been used. The subcommands set flush left and underlined are those which are issued by the ASC to different systems within the equipment. The subcommands which are indented and not underlined are used only within the ASC.

Those sequences involving subcommands which are generated in SKC and which are used to control some portion of the major ASC sequence, are called ASC/SKC sequences. An asterisk is used to identify SKC subcommands which effect some control wherever so doing facilitates an understanding of the ASC/SKC sequence.

ASC ADD X TO A SEQUENCE



ASC SUBTRACT X FROM A SEQUENCE



PX 21

ASC SUBTRACT 1 FROM A SEQUENCE

ASC SPLIT ADD X TO A SEQUENCE

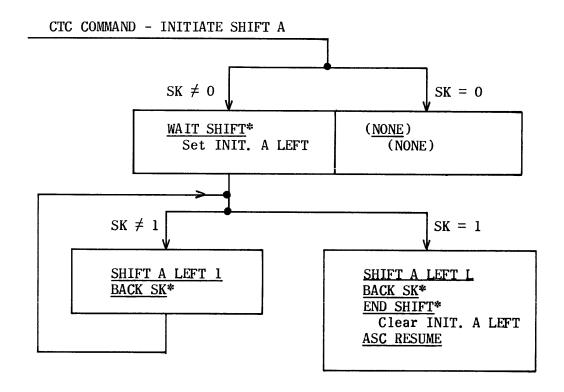
ASC RESUME

CLEAR B PROBE

SET B PROBE

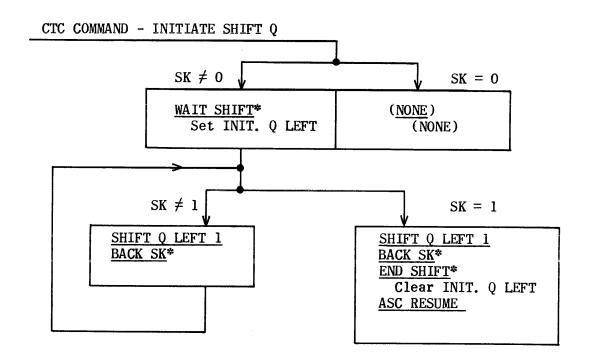
ASC SPLIT SUBTRACT X FROM A SEQUENCE

CTC COMMAND - SPLIT SUBTRACT X FROM A

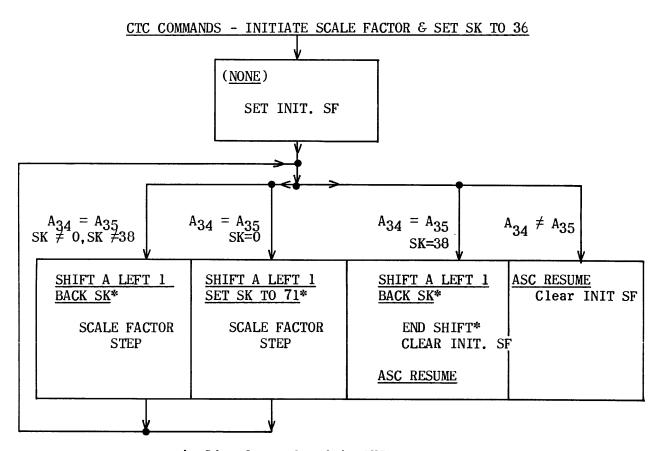

V
COMPLEMENT X
SET SPLIT SUBTRACT
521 01211 005111101
$X' \longrightarrow A_R$
CLEAR SPLIT SUBTRACT
SET A _R PROBE
A
A _R PROBE
CLEAR A PROPE
CLEAR A _R PROBE
SET B PROBE
ASC RESUME
CLEAR B PROBE
CELENT D TRODE

ASC LOGICAL SEQUENCE

CTC COMMANDS - INITIATE LOGICAL & EXT. ARITH. SEQUENCE


Q'──>X' SET EXT. SEQ. SET INIT. LOG. SET DEL. ADD			
$\frac{X' \longrightarrow A_R}{A_L \text{ INPUT}}$			
CLEAR DEL. ADD SET AR PROBE SET A _L PROBE			
A _R PROBE			
A _L PROBE			
CLEAR X			
CLEAR A _R PROBE CLEAR A _L PROBE SET REST. X SET B PROBE			
COMPLEMENT X			
CLEAR B PROBE CLEAR REST. X SET C PROBE			
<u>0'→X'</u>			
CLEAR Q			
CLEAR C PROBE CLEAR EXT. SEQ. SET D PROBE			
COMPLEMENT X			
CLEAR D PROBE SET E PROBE			
X -> Q CLEAR X ASC RESUME			
CLEAR E PROBE CLEAR INIT. LOG.			

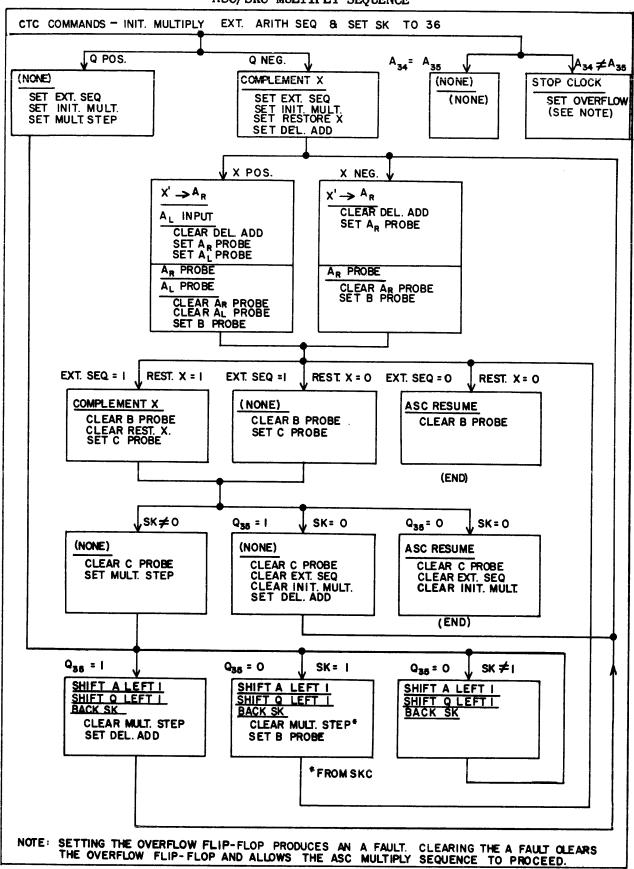
ASC/SKC SHIFT A SEQUENCE


* Signals produced in SKC

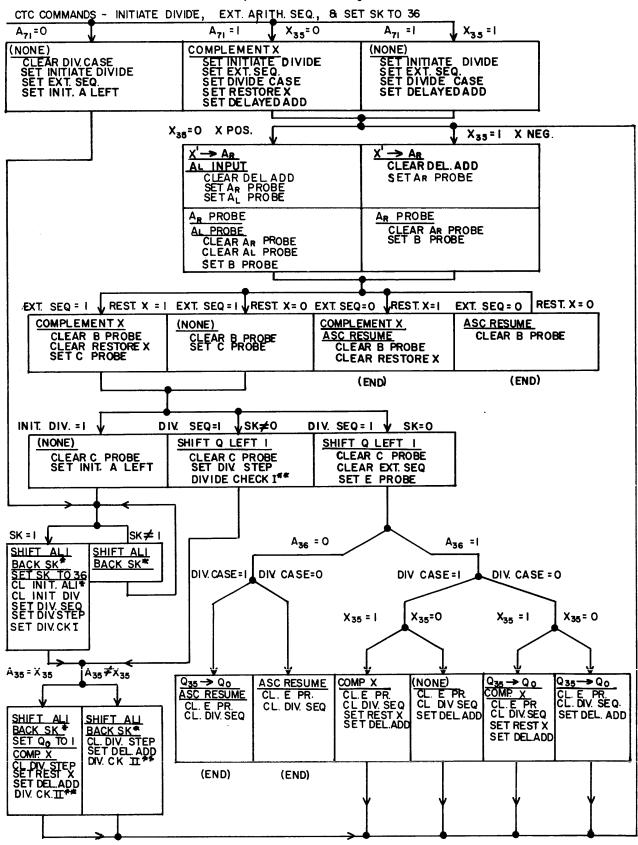
ASC/SKC SHIFT Q SEQUENCE

* Signals produced in SKC

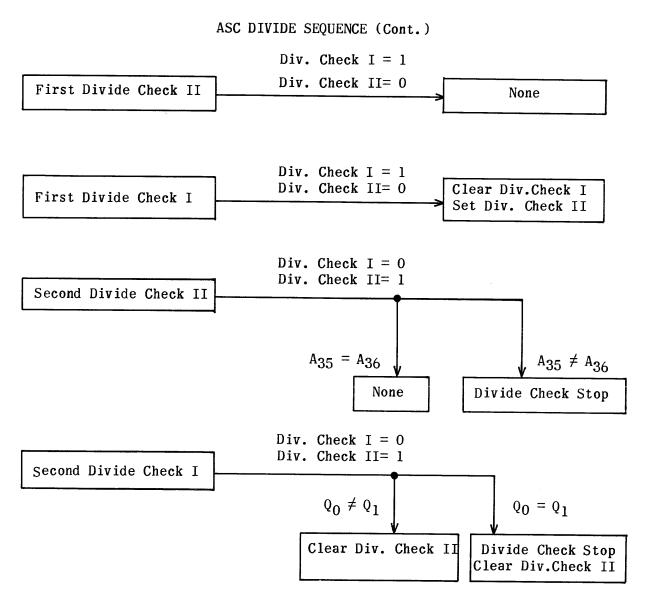
ASC/SKC SCALE FACTOR SEQUENCE

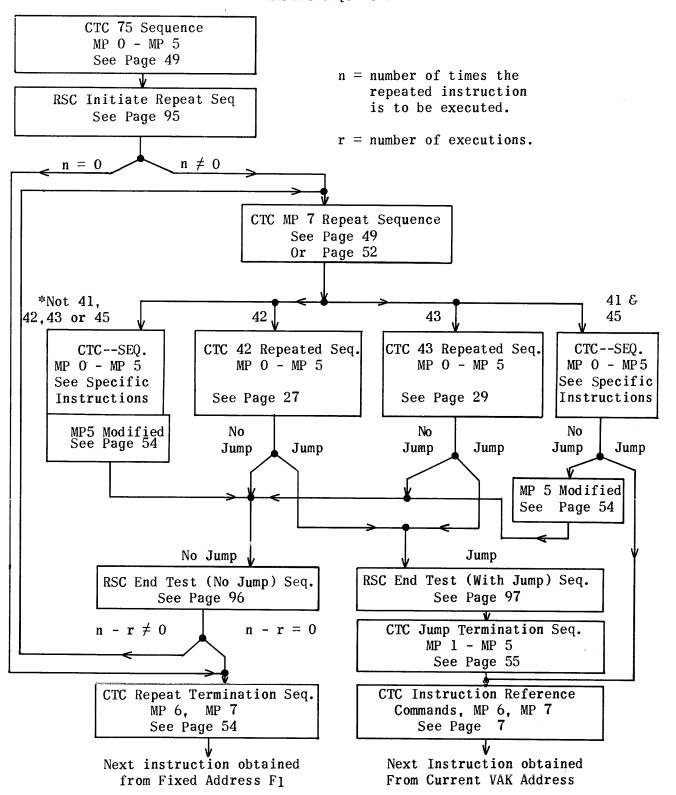


* Signals produced in SKC

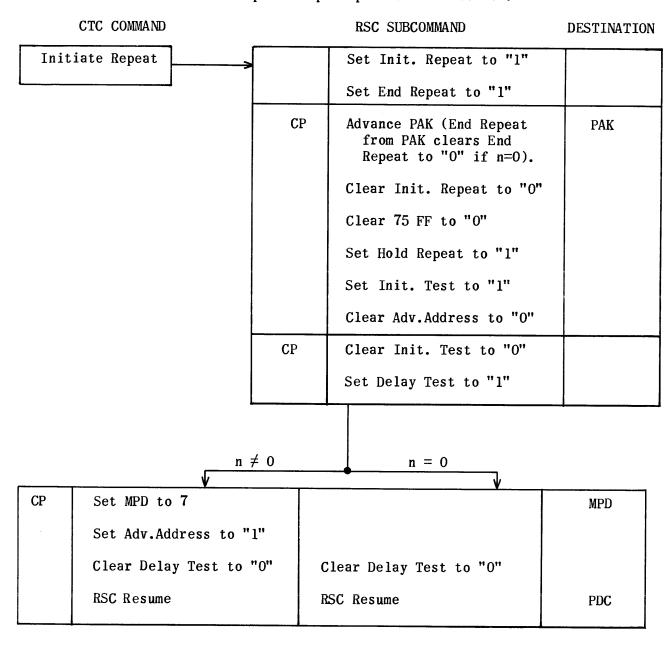

NOTE:

Prior to the initiation of the Scale Factor Sequence the content of A is shifted left 36 places. During the sequence a test is made to determine if $A_{34} \neq A_{35}$. If this condition is met the sequence ends. If this condition is not met the content of A is shifted left and the test repeated. This testing and shifting continues until $A_{34} \neq A_{35}$, or, if this condition is never met, until all bits of A have been tested. At the end of the sequence SK contains the number of shifts necessary to return A to its original contents.


ASC/SKC MULTIPLY SEQUENCE

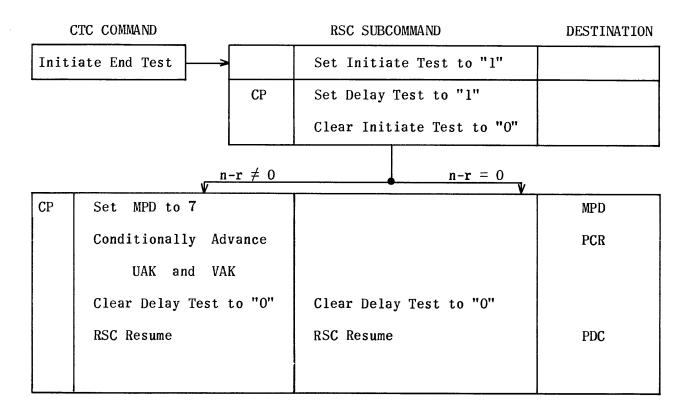

ASC/SKC DIVIDE SEQUENCE

^{*}FROM SKC **DIVIDE CHECK PROBES MADE BEFORE SHIFTING. SEE NEXT PAGE.


- NOTES: 1. After the above division checks have been made the Divide Check I & II flip-flops are both cleared. Divide check Probes I & II are produced but have no effect.
 - 2. Divide Check Stop produces an A Fault Stop.

*Note: Instructions 14, 37, 44, 46, 47, 56 & 57 cannot be repeated because RSC is cleared or the clock is stopped during the execution of these instructions. These instructions therefore, proceed as if no repeat preceded them.

RSC INITIATE REPEAT SEQUENCE


NOTE: During a CTC 75 sequence the 75 flip-flop is set to "1" and the Hold Repeat flip-flop is cleared to "0".

 ${\tt NOTE:}$ Destinations are shown for those RSC signals which are sent to other sections of the computer.

RSC END TEST (NO JUMP) SEQUENCE

- NOTES: 1. This sequence is performed after a repeated instruction sequence if Initiate Jump Terminate is not received from CTC.
 - 2. During MP 5 of the repeated sequence, PAK is advanced. If n-r=0, End Repeat from PAK $_{11}$ clears End Repeat to "0"

NOTE: Destinations are shown for those RSC signals which are sent to other sections of the computer.

RSC END TEST (WITH JUMP) SEQUENCE

- NOTES: 1. This sequence is performed after a repeated instruction sequence if Initiate Jump Terminate is received from CTC.
 - 2. During MP 5 of the repeated sequence, PAK is advanced. If n-r=0, End Repeat from PAK₁₁ clears End Repeat to "0".

CTC COMMANDS		RSC COMMAND	DESTINATION
Initiate Jump Terminate		Set Jump Terminate to "1"	
->		Set Init. Test to "l"	
Initiate End Test		Clear Hold Repeat to "O"	
	CP	Set Delay Test to "l"	
		Clear Init. Test to "O"	
	CP	Clear X	Х
		Set MPD to 1	MPD
		Clear Delay Test to "O"	
		RSC Resume	PDC

NOTE: Destinations are shown for those RSC signals which are sent to other sections of the computer.